
HYCAS 2009
1st International Workshop on Hybrid Control of Autonomous Systems

— Integrating Learning, Deliberation and Reactive Control —

Preface

High-level control for Autonomous Systems (e.g. robots)
is concerned with selecting the next action the system should
perform. In particular this means that the system must be en-
dowed with algorithms or schemes to take the next step to-
wards its mission goal. The known paradigms for this action
selection problem are learning, deliberation, reactive con-
trol schemes or combinations of these schemes, that is, hy-
brid approaches. Learning has been applied successfully to
many robotics tasks. Most of the work is related to learn-
ing certain basic behaviors or skills. Examples where the
high-level control strategy of robots (or agents) were suc-
cessfully learned are rare. The deliberative approach for
decision making of autonomous systems was successfully
treated in research on Artificial Intelligence, following a top-
down approach, which has severe limitations in real applica-
tions. In the reactive control paradigm the idea is that, with
a combination of purely reactive action selection schemes,
intelligent and goal-directed behaviors emerge, which can
be seen as a bottom-up approach. These different paradigms
have been known for over two decades, and in fact, in to-
day’s applications, often combinations of learning, deliber-
ation and reactive control are deployed. Usually these com-
binations are used in an ad-hoc or even unconscious fash-
ion. Although there is a number of proposed architectures
and a huge body of literature, the issue of combining learn-
ing, reactive and deliberative control never has been inten-
sively investigated. With this workshop we wish to bring to-
gether researchers from different areas who concentrate on
combinations of learning, planning, and/or reactive schemes
for decision making and the control of autonomous systems.
The workshop is open to all members of the AI and Robotics
community. We would specifically like to encourage stu-
dents to participate. The questions to be addressed in this
workshop are:
• How can learning, deliberation and/or reactive control be

combined in a beneficial way?
• What are common representations for learning, deliber-

ation, and/or reactive control such that the methods can
benefit from each other?

• What are the challenging domains demanding for hybrid
control?

• What are its successful applications?

The interesting workshop submissions fall, in general,
into three different categories: (1) frameworks and archi-
tectures, (2) planning and execution, and (3) heuristic re-
inforcement learning; and we devoted a separate session to
each of these categories at the workshop. The original works
submitted to this workshop approach the particular research
problem in a hybrid way. This comprises to combine de-
liberation with reactive control, deliberation with learning,
or a combination of all three. As the number of interesting
submissions exceeded the format of a 1-day workshop, we
decided for a poster session to give more papers a chance for
intensive discussion on the topic of hybrid high-level con-
trol for robots or agents. In the following we give a brief
overview of the submissions.

Frameworks and Architectures
(Potgieter et al.) raise the question, what is needed to de-
sign a self-aware robot in terms of deliberation, reactive
control, or learning techniques. While in this paper the
authors position self-aware robots as a problem for hybrid
control and express their understanding of self-awareness
and consciousness, the paper by Bhatt (Bhatt) describes
a framework which aims at bringing together logic-based
robot controllers with cognitively-driven agent-control ap-
proaches. On the technical side, the aim is to combine a
BDI architecture with a STRIPS planner and an IndiGolog
Interpreter. Bhatt describes first experimental results with a
simulated mobile humanoid gripper. (Hawes et al.) describe
the PECAS architecture. In PECAS, components are struc-
tured by their function. Each of these components, called
subarchitectures (SAs), run in parallel and combine delib-
erative and reactive control schemes. As an example the
authors presents the different parallel SAs that are effec-
tive, when the robot is demanded to fetch a particular book.
(Berger et al.) describe with their DAInamite Framwork a
successful integration of learning, deliberation, and reactive
control for a simulated robotic soccer agent. In their frame-
work, it is possible to integrate on-line and off-line learning
into the tactics of the agent without much effort. (Aaron
and Admoni) combine learning, deliberation, and reactive
control within their framework for hybrid dynamical cogni-
tive agents, exploiting a common representation of dynam-
ical intentions, and show how hebbian learning and belief-
intention learning can be integrated with their approach.

iii

Planning and Execution
(Powers and Balch) describe their hybrid robot architecture.
They propose to use supervised machine learning techniques
for improving the cost model which is used for the delib-
eration for the navigation task of a mobile robot. A reac-
tive control layer is used for executing drive commands like
avoid obstacle or slow for turns. Experimental results show-
ing the improvement made by learning are gathered from
simulations. (Guitton and Farges) address the problem, how
a path planner can communicate with a task planner. They
make use of a known interaction language, which also can
be used to express spatial constraints as imposed by the path
planner. These restrictions are communicated to the task
planner, which in turn integrates these information into the
planning process. (McGann et al.) present an approach to
combine deliberation and reactive control for autonomous
underwater vehicles. They make use of constraint-based
temporal planning techniques which are combined with state
estimation techniques based on hidden Markov models in or-
der to plan and conduct marine experiments autonomously.
(Müller) addresses the problem of action selection and in-
troduces an action activation algorithm that is based on P.
Maes’ activation energy spreading algorithm and some of
its existing extensions, while (Shafran et al.) investigates
a robot’s coverage problem under dead-reckoning errors.
Making use of a hybrid coverage algorithm, the maximal
dead-reckoning error can be bound. (Phillipsen et al.) de-
scribe a hybrid approach for a humanoid robot. Hierarchical
tasks nets on the high level are combined with whole-body
control mechanisms on the low level. (Rabinovich and Jen-
nings) present with the Ensemble Action EMT algorithm an
approach for on-line model calibration for their Dynamics
Based Control framework.

Heuristic Reinforcement Learning
(Noglik and Pauli) propose heuristic functions for speeding
up the learning behavior of a rational agent deploying rein-
forcement learning techniques. They show that for simple
navigation problems like the Mountain Car Task the learn-
ing was sped up with a simple heuristic function making use
of the Euclidean distance to the target. These results could
be manifested even for a more complex 3D Mountain Car
Task. (Bianchi et al.) also addresses heuristically accel-
erated reinforcement learning. They propose a novel class
of distributed heuristically accelerated reinforcement learn-
ing algorithms. The heuristic function is an action heuristic
function which indicates the importance of performing an
action in a particular world state. They show that the Ant
Colony Optimization Problem is a problem instance of this
class of reinforcement learning problems for which a dis-
tributed heuristically accelerated approach can be used.

A. Ferrein, J. Pauli, N.T. Siebel and G. Steinbauer

July 2009

iv

Organizing Committee

Alexander Ferrein Robotics and Agents Research Lab,
University of Cape Town, South Africa

Josef Pauli Intelligent Systems Group
University of Duisburg-Essen, Germany

Nils T Siebel Cognitive Systems Group,
Christian-Albrechts-University of Kiel,

Germany

Gerald Steinbauer Institute for Software Technology
Graz University of Technology, Austria

Programme Committee

Alexander Ferrein University of Cape Town, South Africa

Alfredo Gabaldon Universidade Nova de Lisboa, Portugal

Fredrik Heintz University of Linköping, Sweden

Christian Igel Ruhr-Universität Bochum, Germany

Yohannes Kassahun DFKI Lab Bremen, University of Bremen,
Germany

Tim Kovacs University of Bristol, UK

Gerhard K Kraetzschmar University of Applied Sciences,
Bonn-Rhein-Sieg, Germany

Gerhard Lakemeyer RWTH Aachen University, Germany

Ales̆ Leonardis University of Ljubljana, Slovenia

Pedro U Lima Lisbon Technical University, Portugal

Daniele Nardi Università di Roma, Italy

Josef Pauli University of Duisburg-Essen, Germany

Jan Peters Max Planck Institute for Biological
Cybernetics, Tübingen, Germany

Daniel Polani University of Hertfordshire, UK

Martin Riedmiller University of Osnabrück, Germany

Jürgen Schmidhuber Swiss AI Lab IDSIA, Switzerland

Nils T Siebel Christian-Albrechts-University of Kiel,
Germany

Gerald Steinbauer Graz University of Technology, Austria

Ron Sun Rensselaer Polytechnic Institute, USA

Marc Toussaint TU Berlin, Germany

Hans Utz NASA Ames Research Center, USA

Contents

Self-Aware Robots - What do we need from Learning,
Deliberation, and Reactive Control?
Alexander Ferrein, Anet Potgieter and Gerald Steinbauer 1

Toward an Experimental Cognitive Robotics Frame-
work
Mehul Bhatt . 7

An Incremental Approach to Adaptive Integration of
Layers of a Hybrid Control Architecture
Matthew Powers and Tucker Balch . 13

Towards a Hybridization of Task and Motion Planning
for Robotic Architectures
Julien Guitton and Jean-Loup Farges . 21

Planning and Acting with an Integrated Sense of
Space
Nick Hawes, Hendrik Zender, Kristoffer Sjöö, Michael
Brenner, Geert-Jan Kruijff and Patric Jensfelt 25

Integrated Planning, Execution and Estimation for
Robotic Exploration
Conor McGann, Frédéric Py, Kanna Rajan and Angel
Garcı́a Olaya . 33

Application of a Heuristic Function in Reinforcement
Learning of an Agent
Anastasia Noglik, Michael Müller and Josef Pauli 41

On the relation between Ant Colony Optimization and
Heuristically Accelerated Reinforcement Learning
Reinaldo A.C. Bianchi, Carlos H.C. Ribeiro and
Anna H.R. Costa . 49

Combining Learning, Deliberation and Reactive Con-
trol in Simulated Soccer: The DAInamite Framework
Martin Berger, Holger Endert and Simon Joecks 57

Hierarchical Activation Spreading: A design pattern
for action selection
Michael Müller . 63

Coverage Under Dead Reckoning Errors: A Hybrid
Approach
Victor Shafran, Gal A. Kaminka, Sarit Kraus and
Alcherio Martinoli . 71

Bridging the Gap Between Semantic Planning and
Continuous Control for Mobile Manipulation Using a
Graph-Based World Representation
Roland Philippsen, Negin Nejati and Luis Sentis 77

Approaches to Learning for Hybrid Dynamical Cog-
nitive Agents
Eric Aaron and Henny Admoni . 83

Extended Markov Tracking with Ensemble Actions
Zinovi Rabinovich and Nicholas R. Jennings 91

v

vi

Self-Aware Robots –
What do we need from Learning, Deliberation, and Reactive Control? ∗

A Ferrein, A Potgieter
Robotics and Agents Lab
University of Cape Town

alexander.ferrein@uct.ac.za
anet.potgieter@uct.ac.za

G Steinbauer
Inst. for Software Technology
Graz University of Technology

steinbauer@ist.tugraz.at

Abstract
Self-awareness is an important property of intelli-
gent autonomous robots. There are many differ-
ent understandings of what self-awareness means
to an autonomous system. The knowledge rep-
resentation community understands self-awareness
as having the property to do introspection and rea-
soning about oneself, while the computational in-
telligence community understands the ability of be-
ing situation-aware and adaptive as self-awareness.
In this position paper we want to discuss first ideas
how both worlds can be brought together in order to
design a self-aware mobile robot system. We pro-
pose a self-aware system architecture, which cov-
ers the classical tasks such as plan generation, plan
monitoring, and plan execution. In our proposal,
we deploy reasoning techniques for plan genera-
tion, model-based diagnosis for the execution mon-
itoring, and complex adaptive systems theory for
the execution component. Our interest in the work-
shop is to discuss what techniques needs to be ap-
plied to design a self-aware system.

1 Introduction
Self-awareness is an important property of intelligent au-
tonomous robots. Intelligent means here, that the robot em-
ploys some form of reasonable behavior to fulfill its given
goals. Why does the robot furthermore need to be self-aware?
If the robot understands its own abilities, it could judge the
appropriateness of its own actions. Consider a domestic robot
that is interacting with its human masters. The robot should
be aware that it has to drive more carefully and slowly, when
it is delivering a cup of coffee and the cup is in the gripper of
the robot. Self-awareness is the ability of judging the appro-
priateness of own actions and their effects in a given context
or situation, and seems inherently connected with acting in an
intelligent way.

The term self-awareness, on the one hand, is strongly con-
nected with the term consciousness. As the topic of con-
sciousness (even of machines) is topic for ongoing research

∗A. Ferrein is currently funded by a grant of the Alexander von
Humboldt foundation. We would like to thank the reviewers for their
helpful comments.

in neuroscience and philosophy, a coherent definition still
needs to be found. Besides these classical fields, also the
Knowledge Representation and Reasoning (KR&R) commu-
nity has a strong interest in self-aware robots. In 2004, a
DARPA workshop addressed Self-aware Computer Systems
[McCarthy and Chaundhri, 2004]. Amir et al. report on the
result of this workshop in [Amir et al., 2006], where they
distinguish between self-awareness in a social-agent and in
a monitoring-executive sense. In [Schubert, 2005] Schubert
discusses some requirements for KR&R connected with self-
awareness such as the requirement for a logical framework,
which is able to represent events and situations and has some
means for auto-epistemic inference.

On the other hand, in the analysis of complex adaptive
systems, self-awareness is an inherent property of an emer-
gent system. Here, self-awareness of an agent includes the
situation-awareness of the robot, which comes into play,
when the robot integrates sensor values into its internal
model. All complex adaptive systems exhibit adaptive self-
awareness, which is described in [Mitchell, 2005] as hav-
ing information about the global state of the system, which
feeds back to adaptively control the actions of the system’s
low-level components. According to Mitchell, the informa-
tion about the global state is distributed and statistical in na-
ture, and thus is difficult for an observer to understand. In a
complex adaptive system, information about the global sys-
tem state are emergent phenomena, which are instances of
some emergent higher-order structure that may be explained
by the lower-level dynamics generating the collective behav-
ior [Baas and Emmeche, 1997]. Baas refer to these structures
as hyperstructures or “emergent explanations”, which consti-
tute the internal model of the complex adaptive system. These
hyperstructures are used for explanation and understanding.

The former definition of self-awareness can be seen as a
high-level top-down view, while the latter represents a low-
level bottom-up approach of self-awareness. From the high-
level view, the missing part is the ability to adapt its model
through learning, the low-level view is lacking the ability
for full introspection, as the hyperstructures do not offer any
means for reasoning. Our goal for achieving self-awareness
is to marry both views and provide a coherent adaptive self-
model, which can be used by a deliberation mechanism and
that can evolve to accommodate emergent knowledge pro-
vided by the adaptive low-level behavior engine. We propose

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

1

a system architecture which integrates both, the possibility to
do high-level reasoning as well as employing complex adap-
tive systems on the behavior side. For checking discrepan-
cies between the current model and the feed-back from the
environment, we want to follow a model-based diagnosis ap-
proach. Hence, a diagnosis engine is the third building block
in our architecture.

We are interested in discussing possible techniques for
combining both worlds at the HYCAS workshop. What
kind of techniques from the field of computational learning,
KR&R, and reactive control are needed to design a self-aware
robot system? In the next section, we review several different
understandings of self-awareness and substantiate our under-
standing of the term. We derive the implications for a robot
system architecture, which we present in Section 3. In Sec-
tion 4 we propose which method we are going to use to im-
plement the self-aware system. We conclude with Section 5.

2 Disambiguation: Consciousness and
Self-awareness

We follow two separate lines to approach our understanding
of self-awareness. One is a KR&R view and describes which
properties a logic-based self-aware robot needs to meet, while
the other illuminates the term self-awareness from the Com-
plexity Theory side.

In [Holland, 2003], Holland collects a number of arti-
cles about the topic of machine consciousness and gives an
overview of different streams of research in that field. For ex-
ample, [Aleksander and Dunmall, 2003] define five axioms,
or better, properties, which a conscious system has to ful-
fill. These are depiction, imagination, attention, planning,
and emotion. While we are aiming to have the properties de-
piction, imagination, attention, and planning, we are —with
our understanding of self-awareness— aiming at a more re-
stricted form of consciousness. In contrast, for Holland and
Goodman [Holland and Goodman, 2003] it is sufficient to
have a control system with a sophisticated internal model. In
the context of self-awareness, [Amir et al., 2006] mentions
three different notions: (1) explicit self-awareness, (2) self-
monitoring, and (3) self-explanation. The first form is the
strongest and presupposes a complete self-model that repre-
sents knowledge about itself including knowledge about the
own abilities, the own knowledge and intentions, but also
about the current situation. Self-monitoring means to watch-
dog the internal processes, for instance just like an oper-
ating system does and integrating new regularities into the
self-model. Finally there is the notion of self-explanation.
Here, the agent should be able to recount or justify its actions
and inferences. [Amir et al., 2006] moreover distinguish be-
tween two different flavors of self-awareness. The one sees
the robot as a social subject in an agent community and self-
awareness then means that the robot is aware of being one
subject in a community, while the second one sees the agent
in a monitoring-executive sense. Here, the robot or agent is
regarded as an isolated entity with the ability to perform in-
trospection. In [Gamez, 2008] Gamez gives a comprehensive
overview of the field of machine consciousness in the various
facets. For a more detailed overview, we refer to [Gamez,

2008]. Another concise overview of the topic can be found in
[van Zon, 2006].

In the bottom-up approach to self-awareness, conscious-
ness and self-awareness can be described by using complex-
ity theory. Complexity theory is about complex adaptive sys-
tems, all sharing some fundamental principles. Examples in
nature include the brain, the immune system, swarms and
crowds. Each of these systems is comprised of many “agents”
all acting in parallel, constantly interacting with each other
and the environment. As the system increases in complex-
ity, new behaviors emerge that are not evident from local in-
teractions amongst agents —leading to the phenomenon of
the whole being more than the sum of the parts. Complexity
theory can be described as the science of emergence. Col-
lectively agents in a complex adaptive system learn from ex-
perience in order to adapt to the dynamically changing envi-
ronment. In the brain, the agents are nerve cells, and con-
sciousness and self-awareness are emergent phenomena that
cannot be described by static knowledge representation struc-
tures, as is currently used in top-down approaches. All com-
plex adaptive systems exhibit adaptive self-awareness, which
is described in [Mitchell, 2005] as having information about
the global state of the system, which feeds back to adap-
tively control the actions of the system’s low-level compo-
nents. This information about the global state is distributed
and statistical in nature, and thus is difficult for observers to
interpret. However, the system’s components are able, col-
lectively, to use this information in such a way that the entire
system appears to have a coherent and useful sense of its own
state.

Emergent phenomena are instances of some emergent
higher-order structure that may be explained by the lower-
level dynamics generating the collective behavior [Baas and
Emmeche, 1997]. The set of hyperstructures in a complex
adaptive system constitute the internal model of such a sys-
tem. All complex adaptive systems maintain internal models
[Holland, 1995]. Emergence occurs as soon as the regular-
ities identified in the input stream deviate from what is ex-
pected from the internal model maintained by the complex
adaptive system. Emergence can usually be explained com-
pletely, once the interactions between the system components
are taken into account [Minsky, 1988]. The internal model,
consisting of hyperstructures, facilitates the explanation of
emergence, and thus an understanding of cause-effect rela-
tionships between local situations and emergent global be-
haviors.

3 A Rough Architecture Sketch
From the above disambiguation and the different facets
of self-awareness, we derive our understanding of self-
awareness. For an autonomous robot, we see self-awareness
in a monitoring-executive sense, rather than in the social-
agent sense as described in [Amir et al., 2006]. Moreover, we
are not going towards consciousness in a broad philosophical
sense, but want to build a self-sustainable system that is able
to detect flaws in the behavior execution and is able to take
appropriate counter measures. Additionally, we want to have
an adaptable system. Hence for now, we do not aim at build-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

2

The Agent

S
e
n
s
o
r
s

A
c
t
u
a
t
o
r
s

World
Model

Run-time
System

Self-Model

Reasoning
Component

Diagnosis
Engine

Behaviour
Engine

Basic Action
Theory

Background
Model

Internal
Model

Figure 1: Architecture Overview

ing a robot system which is able to converse with humans in
a smart way.

The implications for the high-level cognitive architecture
according to [Amir et al., 2006] are that ”a self-aware sys-
tem must have sensors, effectors, memory (including rep-
resentation of state), conflict detection and handling, rea-
soning, learning, goal setting, and an explicit awareness of
any assumption. The system should be reactive, deliberative,
and reflective”. The requirements for a self-sustainable, self-
aware system imply in a way the different system compo-
nents. Figure 1 sketches our target system architecture. It
breaks down into a plan-generation, a plan-execution, a plan-
monitoring component, and the self model. All these compo-
nents are equipped with their own background models, com-
mon for them, though, is a self model which holds facts about
the robot itself. From the sensory information, a world model
is constructed which stores and derives all the relevant infor-
mation needed by the action selection components.

The action selection is three-fold. On the one hand, there
is a deliberative component which will make plans for future
courses of actions. It makes use of a so-called basic action
theory, a formal theory which describes the effects of per-
forming a particular action in the world. These plans and
actions will be passed to the behavior engine, which in turn
will send it to the run-time system, which is executing them.

The monitoring tasks is done by an explicit diagnosis en-
gine equipped with model-based reasoning techniques. The
diagnosis engine uses models about the robot itself, its task
and the world around it, to do a kind of self reflecting. The
models and among them the self-model describe what the
agent expects from itself, from actions, from plans and about
the world. Moreover, the models specify the desired behav-
iors of sub-systems of the robot. We use consistency-based
reasoning techniques. The diagnosis engine uses these mod-
els together with observations to derive if there is a discrep-
ancy between the actual world and the expected world. This is
similar to how a human reflects about a situation and detects
if things evolved not as expected. The so generated feedback
can be used in other components of the proposed architecture.

Next, there is a behavior engine, that is a complex adap-
tive system that mines regularities from the input stream, up-

dates the hyperstructures in the internal model and the self
model with emergent patterns that will be used by the di-
agnosis system and deliberative system to feedback the ap-
propriate commands to the low-level behavior components.
The behavior engine is based on the BaBe Adaptive Agent
Architecture proposed and developed by Potgieter [Potgieter,
2004]. Collector agents feeds the input stream to the learning
agents that mines regularities from the input stream and up-
dates the hyperstructures in the internal model of the behavior
engine with emergent patterns. The reasoning engine queries
the reasoning agencies to determine the best actions to take
given the global state of the robot.

Finally, there is the self model. It shall store all the infor-
mation regarding the robot itself. We feel the need to sepa-
rate knowledge about the robots inner workings from it op-
erational knowledge, for example how to pickup the coffee
cup. The action, how to grab the cup should be stored in
the basic action theory, while, for example, the fact that lift-
ing the cup will consume battery power should go to the self
model. It should also contain that the robot has to drive more
carefully. In that sense the self model interacts with the high-
level decision making. There are also intersections between
the knowledge of the diagnosis engine and the deliberation.
The diagnosis engine will have a rather complete knowledge
of the workings of the robot, though it needs to maintain some
generic knowledge of the world, which it stores in its back-
ground knowledge. Both, the diagnosis engine and the de-
liberation will make use of the common knowledge which
is stored in the self model. One of the open challenges will
be how the adaptive behavior engine can share the common
knowledge about the robot itself. We will sketch our ideas
how this could be done in the next section.

4 Learning, Deliberation, or Reactive
Control?

In the following, we sketch our first ideas, what might be
needed from learning, deliberation, or reactive control. It
is in a way driven from the scientific background of the au-
thors, and we want to discuss our view on self-aware robots
with researchers with different backgrounds at the HYCAS
workshop.

4.1 The Self Model
The robot should be enabled to derive facts about itself. As
an example, consider that the robot is to deliver the cup of
coffee. A fact it needs to know is that driving from A to B
consumes battery power. Holding the cup in the gripper costs
additional power. It also should be aware that it should drive
more carefully than without holding a cup. This distinguishes
between the basic action theory, the diagnosis background
model, and the self-model. The delivery-action’s effects on
the world will be kept in the basic action theory, while the
effects of this action on the robot itself go to the self-model,
e.g. that this action consumes power. In the same way, the
differences between the background diagnosis model can be
separated from the self model. How the robot works inter-
nally, i.e. its component model, is stored in the self model
while diagnosis-related knowledge about the world is kept in

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

3

the background diagnosis model. Similarly, in the internal
model the Behavior Engine will update its hyperstructures,
for instance Bayesian nets, based on new sensor readings.
At certain time instances, parts of the self model are updated
based on the updated internal model of the Behavior Engine.
The challenge here is to ground the symbols of the internal
model and the self model appropriately. The world model, on
the other side, stores an actual snapshot of the world based
on the available sensors. Moreover, it provides aggregated
information which were derived from the sensor readings.

Given the envisioned models, the self model should be en-
coded in a logical language. As we yet are not sure about the
needed expressiveness, assume a first order representation for
the time being. One of the challenges we have to cope with
for future work is how the robot can make use of this kind
of information to, for instance, improve or restrict the plan-
ning component. With relocating robot-specific information
to the self model, the action theories of the robot could be
designed in a more general way, yielding higher portability
for the reasoning component. Moreover, the diagnosis engine
can use such a self model and will benefit from it. The self
model or parts of it can be seen as a description of the proper
behavior of parts of the robot in the sense of model-based
reasoning. These parts may comprise hardware or software
or both, e.g., the locomotion system of the robot. Moreover,
it can be a description about the expectations the robot has
about the outcome of action, plans or goals.

As an example how the self-model connects to the behav-
ior engine, consider that the robot might have learned over
time the probabilistic cause-effect relationships between the
amount of battery power that is consumed by different ac-
tions, for instance, holding the cup in the gripper. The learn-
ing agencies furthermore could have mined the cause-effect
relationships between the speed of driving an the spilling of
coffee. The reasoning engine will determine the state of the
robot from the self-model, and determine that the robot is
holding a cup of coffee in its gripper. It will then pose a What-
If query to the reasoning agencies in the form of: “What is the
type of driving that should be followed given that the robot is
holding a cup of coffee?” From the internal model, the rea-
soning agencies, through inference, will determine that the
best action to follow is careful driving. The action models of
careful driving will be fed back to the competence agents that
will deliver it to the actuators and that will interact with the
diagnosis engine to make sure that careful driving is achieved.

4.2 The Reasoning Component
The reasoning component will be implemented as a high-
level control program in the agent programming language
Readylog [Ferrein and Lakemeyer, 2008]. Readylog is a lan-
guage from the Golog language family, and the semantics of
its constructs is based on situation calculus formulas [Mc-
Carthy, 1963; Reiter, 2001]. Readylog was designed to espe-
cially fit the needs of real-time dynamic application domains
by integrating many different language constructs in one co-
herent language framework which comes with an effective
run-time system. Planning in Readylog can done by decision-
theoretic planning, though external planning systems can be
interfaced. Before, Readylog was used to design the high-

level control of agents and robots in robotic soccer competi-
tions. The high-level Readylog controller is equipped with a
model of all the basic behaviors the robot can perform. These
are called primitive actions. For each of these primitive ac-
tions, a situation calculus formalization exists describing the
effects of the particular action to the world. These form,
together with precondition axioms as well as further back-
ground axioms, the basic action theory. Note, that the basic
action theory contains knowledge of the world, not about the
internal workings of the robot. Knowledge about the robot
itself is stored in the self model and is conceptually kept sep-
arated from the basic action theory.

4.3 Diagnosis Engine
The diagnosis engine uses methods from model-based rea-
soning. It is based on the diagnosis ideas of Reiter [Reiter,
1987]. It is an consistency-based approach. The idea is that
there is a model which describes the desired behavior of a
component or system or the expected outcome of an action or
plan. The engine uses this model together with actual obser-
vations to detect discrepancies between the expected and the
real output or outcome. Such a detected discrepancy is a sign
that something went wrong in the robot or around it. Regard-
ing the application area of the diagnosis one can use qualita-
tive, quantitative or combined model. The choice depends on
the nature of the monitored system. We used Horn clauses as
qualitative models to describe and diagnosis control software
for autonomous robots [Steinbauer and Wotawa, 2005]. We
used hybrid automata as combined models to handle faults in
the drive hardware of a mobile robot [Hofbaur et al., 2007].
Based on the ideas of Reiter the diagnosis engine is not only
able to detect discrepancies. It is also able to deliver an ex-
planation for the detected discrepancy, e.g. a broken part in
the robot’s hardware. Such information about the root cause
was already used in [Hofbaur et al., 2007] for a online recon-
figuration of a drive controller in order to cope with faults in
the drive hardware of a robot. In the proposed architecture
the diagnosis engine is used as critic mechanism for differ-
ent parts of the robot. That parts can be more physical like
the hardware as pointed out above, the actions executed by
the behavior engine [Steinbauer and Wotawa, 2008] and also
parts of the deliberative decision making component. Once
the architecture detects a discrepancy between the world and
its expectations such a feedback can be used to adapt or opti-
mize parts of the system.

4.4 Behavior Engine
The behavior engine will be a complex adaptive system to be
implemented using the BaBe adaptive agent architecture. The
BaBe agent architecture is a commercial agent architecture
described in [Potgieter, 2004]. The BaBe agents are simple,
resource-constrained agents, interacting locally through the
environment, and coordinating their behavior through the en-
vironment. It consists of four types of simple agents, namely
collector agents, learning agents, reasoning agents and com-
petence agents. The learning agents are grouped into agencies
according to data-groups provided by the collector agents.
These agencies incrementally learn by mining patterns from
the data groups. These patterns are stored in an internal

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

4

model, which is used by the reasoning agencies to reason
about the current context of the environment, of which the
outcome is used by the competence agencies to activate the
appropriate behaviors suited to the current context of the en-
vironment. The BaBe agents exchange information through a
shared environment. The collector agents extract data groups
from different sensors and data sources, distributed through
the environment. The learning agents collectively mine pat-
terns from these data groups using distributed learning algo-
rithms such as Bayesian learning, genetic algorithms, neural
networks and leave patterns in the internal model that will
be used by the deliberation and diagnosis engines to deter-
mine their subsequent actions or behaviors of the competence
agents. The reasoning agents collectively reason about the en-
vironmental context provided by the deliberation engine us-
ing Bayesian belief propagation.

4.5 Research Questions

One of the major research challenges here is the needed uni-
fication of models from different parts of the system. The
idea is that we have a unique description language for the
self model which can be used by the reasoning component,
the diagnosis engine and the behavior engine. That would be
the ultimate outcome if we are able to describe the different
aspects of the robot like actions, behaviors, controls in one
self model usable by all components. So far we have very
different languages like the situation calculus for the deliber-
ation, horn clauses or hybrid automata for the diagnosis on
the one hand, and Bayes nets for the execution, on the other
hand. Another important question is what we have to model
and on what level of abstraction in order to be able to form a
self-ware system. Such questions frequently arise if one deals
with knowledge-based agent and as far as we know there is
no formal methodology nor best practice examples. Finally,
we have to investigate how such a self-aware system can be
applied to an autonomous robot with very limited resources in
terms of computational power and memory like the humanoid
bi-ped robot platform Nao from the French company Alde-
baran. For sure there are additional algorithms like knowl-
edge compilation and caching necessary beside the classical
reasoning techniques in order to run such a system.

5 Conclusion

In this paper we presented some of our thoughts regarding
the topic of self-aware robot systems. We aim at designing a
self-sustainable, self-aware system in a monitoring-execution
sense. Hence, our self-aware robot need to be able to reason
about itself, needs conflict detection and handling, as well as
reasoning and learning abilities. Taking this together, we pro-
pose a system with a logic-based high-level reasoning com-
ponent, a diagnosis engine working on models formalized in
Horn Logic, and a behavior engine, which takes observation
of the world to update and adapt the internal model of the
robot. At the workshop, we want to discuss our ideas about
the different components and the methods we want to deploy
for implementing this architecture on real robots.

References
[Aleksander and Dunmall, 2003] Igor Aleksander and Barry Dun-

mall. Axioms and tests for the presence of minimal conscious-
ness in agents. Journal of Consciousness Studies, 10(4), 2003.

[Amir et al., 2006] Eyal Amir, Michael Anderson, and Vinay
Chaudhri. Report on the 2004 darpa workshop on self-aware
computer systems. Technical report, SRI International, 2006.

[Baas and Emmeche, 1997] N. A Baas and C. Emmeche. On emer-
gence and explanation. Intellectica, 25:67–83, 1997.

[Ferrein and Lakemeyer, 2008] Alexander Ferrein and Gerhard
Lakemeyer. Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems, 56(11):980–991,
2008.

[Gamez, 2008] David Gamez. Progress in machine consciousness.
Consciousness and Cognition, 17(3):887 – 910, 2008.

[Hofbaur et al., 2007] Mathias Brandstötter Michael Hofbaur, Ger-
ald Steinbauer, and Franz Wotawa. Model-based fault diagnosis
and reconfiguration of robot drives. In Proc. IROS-07, San Diego,
CA, USA, 2007.

[Holland and Goodman, 2003] Owen Holland and Russell B.
Goodman. Robots with internal models: A route to machine con-
sciousness? Journal of Consciousness Studies, 10(4):77–109,
2003.

[Holland, 1995] J. H. Holland. Hidden Order: How Adaptation
Builds Complexity. Massachusetts :Addison-Wesley Publishing
Company Inc, 1995.

[Holland, 2003] Owen Holland, editor. Machine Consciousness.
Imprint Academic, 2003.

[McCarthy and Chaundhri, 2004] John McCarthy and Vinay
Chaundhri. DARPA Workshop on Self Aware Computer
Systems, 2004.

[McCarthy, 1963] J. McCarthy. Situations, actions and causal laws.
Technical report, Stanford University, 1963.

[Minsky, 1988] M. Minsky. The Society of Mind (First Touchstone
ed.). New York: Simon and Schuster, 1988.

[Mitchell, 2005] Melanie Mitchell. Self-awareness and control in
decentralized systems. In Working Papers of the 2005 AAAI
Spring Symposium on Metacognition in Computation. AAAI
Press, 2005.

[Potgieter, 2004] Anet Potgieter. The Engineering of Emergence in
a Complex Adaptive System. PhD Thesis, University of Pretoria,
South Africa, Supervised by Judith Bishop, 2004.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Reiter, 2001] R. Reiter. Knowledge in Action. MIT Press, 2001.
[Schubert, 2005] Lenhart K. Schubert. Some kr&r requirements for

self-awareness. In 2005 AAAI Spring Symposium, pages 106–
113. AAAI Press, 2005.

[Steinbauer and Wotawa, 2005] Gerald Steinbauer and Franz
Wotawa. Detecting and locating faults in the control software of
autonomous mobile robots. In Proc. IJCAI-05, Edinburgh, UK,
2005.

[Steinbauer and Wotawa, 2008] Gerald Steinbauer and Franz
Wotawa. Enhancing plan execution in dynamic domains using
model-based reasoning. In Proc. ICIRA, pages 510–519, 2008.

[van Zon, 2006] Kees van Zon. An introduction to machine con-
sciousness. In Intelligent Algorithms in Ambient and Biomedical
Computing, pages 57–70. Springer Verlag, 2006.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

5

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

6

TOWARD AN EXPERIMENTAL COGNITIVE ROBOTICS FRAMEWORK

Mehul Bhatt

SFB/TR 8 Spatial Cognition
Universität Bremen, Germany

bhatt@informatik.uni-bremen.de

ABSTRACT

We position our experimental framework for cognitive
robotics that is aimed at integrating logic-based and
cognitively-driven agent-control approaches, qualitative
models of space and the ability to apply these in the
form of planning, explanation and simulation in a wide-
range of robotic-control platforms and simulation envi-
ronments. In addition to its primary experimental func-
tion, the research proposed herein also has a utility to-
ward pedagogical purposes. We present the overall vi-
sion of the project, and discuss ongoing work and present
capabilities.

KEYWORDS: reasoning about actions and change, quali-
tative spatial reasoning, dynamic spatial systems, control,
experimental robotics, simulation

1 INTRODUCTION
Research in the field of Reasoning about Actions and Change
(RAC), also and increasingly being referred to as Cogni-
tive Robotics, has considerably matured [Levesque and Lake-
meyer, 2007]. Over the last decade, some of the theoreti-
cal work and the resulting formalisms for representing and
reasoning about dynamic domains have evolved into prac-
tically applicable high-level agent control languages, the
most prominent examples here being the situation calculus
based GOLOG [Levesque et al., 1997] family of languages,
e.g., CCGOLOG [Grosskreutz and Lakemeyer, 2000], CON-
GOLOG [De Giacomo et al., 2000], INDIGOLOG [Giacomo
and Levesque, 1999], which is an incremental deterministic
version of CONGOLOG, and the fluent calculus based lan-
guage FLUX [Thielscher, 2005]. Differences in the theoreti-
cal underpinnings notwithstanding, a common feature of all
these languages is the availability of imperative programming
style constructs for the domain of robotics/agent-control, i.e.,
statement in the program correspond to actions, events and
properties of the world in which an agent is operating. Paral-
lel to the development in the area of reasoning about actions
and change, the field of Qualitative Spatial Reasoning (QSR)
has emerged as a sub-division in its own right within knowl-
edge representation [Cohn and Hazarika, 2001]. Research
in QSR has focused on the construction of formal methods
(i.e., qualitative spatial calculi) for spatial modelling and rea-
soning. The scope of QSR, at least in so far as the context

of qualitative spatial calculi is concerned, has been restricted
to representational modes for spatial abstraction and reason-
ing. Major developments in this regard include: (a) the de-
velopment of spatial calculi that are representative of distinct
spatial domains, (b) constraint-based techniques for ensur-
ing the global consistency of spatial information and (c) the
application of conceptual-neighborhoods [Freksa, 1991] for
dealing with continuous change and time. Similarly, there
have also been considerable advances in the benchmarking
of the computational aspects of the planning domain and de
facto standardization of domain description languages in the
form of the PLANNING DOMAIN DEFINITION LANGUAGE
(PDDL) [McDermott et al., 1998] and related initiatives. Re-
cent work even indicates a cross-over of results from the plan-
ning domain to the cognitive robotics area. For instance, the
work by Claßen et al. [2007b,a] combines reasoning using the
GOLOG language with modern PDDL planners by the em-
bedding of state-of-art planning systems within the former.
The main objective of this line of approach is that the power
of modern efficient planners be exploited whilst preserving
the overalll representational semantics of the situation calcu-
lus formalism that underlies the GOLOG language.

In this paper, we position our ongoing work toward the de-
velopment of a framework for cognitive robotics that brings
together logic-based and cognitively-driven agent-control ap-
proaches in an experimental manner. The proposed frame-
work is designed to integrate diverse control calculi based
on mathematical logic, qualitative models of space and the
ability to apply these – in the form of spatial planning, ex-
planation and simulation – for dynamic spatial modelling
with a wide-range of robotic-control platforms and simula-
tion environments. Indeed, the framework is driven by the
need for a workbench that seamlessly brings together differ-
ent control techniques, both logic-based and otherwise, and
a generic (based) domain-description language, and qualita-
tive spatial calculi under one unifying, experimental frame-
work. The main objective here being that it should be possi-
ble for a domain-modeller to specify the physics of a particu-
lar domain once and exploit more than one control approach
thereafter, without the need to dwell on the details of any of
the available control approaches or qualitative spatial calculi.
In addition, it is also required that the envisaged framework
provide easy integration with existing low-level control ap-
paratus such as robot control and simulation interfaces that

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

7

file:bhatt@informatik.uni-bremen.de

e.g., Player/Stage/Gazebo

Situation Calculus

Event Calculus

Fluent Calculus

BDI

STRIPS

Spatial calculus N
e.g., topology

....

Spatial Calculus 1
e.g., orientation

about Action and change
Control Calculi −− Reasoning

Description Language

Domain−Independent Qualitative

Spatial Theory

Dynamic Spatial Domain

Controller Communication Interface

Robotic Platforms

and

Simulators

(Logic and cognitively driven architectures)

Figure 1: Overview of the Framework

exist in the open-source domain, a prime example of such
an environment being the PLAYER/STAGE/GAZEBO project.
We envisage that such a framework that supports easy experi-
mentation with different control techniques, provides general
modes of spatial information representation and reasoning,
and additionally seamlessly integrates low-level control ap-
paratus would, in addition to serving it primary experimen-
tal function, also be useful for pedagogical purposes at the
tertiary-level.
Section 2 provides a brief overview of the proposed frame-
work and section 3 positions the work in progress in terms
of its implementation and other technical details. In section
4, we briefly discuss the immediate directions of the ongoing
work.

2 OVERVIEW OF THE FRAMEWORK
The primary aim of the framework is to provide a workbench
of different control approaches that may be used ‘indepen-
dently’ for experiments in cognitive robotics. Toward this
end, the framework consists of four key components. In (C1–
C4) in the following, a conceptual overview of these compo-
nents, as they are presently envisioned, and the main motiva-
tions thereof are presented with reference to the schematic in
Fig. 1:

C1. UNIFORM DOMAIN DESCRIPTION
A basic requirement within the framework is that it should
be possible for modellers to specify the domain theory of
their particular scenario, i.e., the underlying physics of the
domain, using an uniform representation medium that is in-
dependent of the control apparatus that is being utilized. Such
a medium requires a unified ontological view that transcends
beyond any particular control calculus or non-logical con-
trol approach that is available within the framework. Among
other things, what is required is that key ontological aspects

pertaining to actions, events, effects, fluents and conditions
need to be integrated in an ontology that may be utilized by
the modeller of a domain. Such an ontology will facilitate the
specification of a dynamic domain in a manner that is inde-
pendent of the precise control mechanism (available within
the framework) that is utilized as the basis of modelling and
reasoning about change. Consequently, it is also implied that
such a generic domain description is usable across all control
(or reasoning) approaches that are available within the exper-
imental framework. Although the issue of ontology construc-
tion is quite orthogonal to the issue of the precise language
or mechanism to be used for instantiating it whilst modelling
a domain, we consider the semantics of the basic versions of
the PDDL language to be rich enough to cover most general
scenarios. However, the use of PDDL as a means for uni-
form domain description within our framework is a topic of
ongoing investigation.

C2. MULTIPLE CONTROL APPROACHES
As aforementioned, the primary aim of the framework is to
provide a suite of different control approaches that may be
used for representing and reasoning about dynamic environ-
ments. The suite of control approaches available with the
framework also constitutes the most important (functional)
component of the overalll experimental framework. It con-
sists of a collection of several different formal techniques,
both logic-based and cognitively-driven models, that can be
used as control mechanisms in robotic domains or be used to
reason about changing spatial environments in general. Con-
trol approaches based on the following formalisms will be
available for use in an independent manner within the pro-
posed framework:

1. A basic STRIPS like planning system [Fikes and Nils-
son, 1990]

2. Belief-Desire-Intention (BDI) Approach [Bratman,
1987]

3. Event calculus [Kowalski and Sergot, 1986]
4. Fluent calculus [Thielscher, 1998]
5. Situation calculus [McCarthy and Hayes, 1969]
Several high-level languages that are directly based on

the above mentioned formal approaches are already avail-
able, e.g., the GOLOG family of languages based on the
situation calculus [Levesque et al., 1997, Lakemeyer and
Grosskreutz, 2001], FLUX – the fluent calculus based lan-
guage [Thielscher, 2005] and a discrete event calculus based
reasoner [Mueller, 2007]. The utility of the aforementioned
control calculi and the high-level languages that are based on
these calculi for the modelling of dynamics cannot be taken
granted – rather fundamental problems (e.g., frame, ramifi-
cation, qualification) relevant to modelling changing environ-
ments have been thoroughly investigated in the context of the
class of formalisms aforementioned [Shanahan, 1997]. This
has also resulted in several non-monotonic extensions to clas-
sical symbolic approaches that are better suited for modelling
dynamically changing systems [Bhatt and Loke, 2008, Bhatt,
2008] and representing cognitively adequate (human-like)
common-sense reasoning with incomplete information. By

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

8

including these diverse control approaches within the frame-
work, the objective is to facilitate and promote the experi-
mental, pedagogical and other potential uses of the frame-
work. Finally, it should be noted that the proposed frame-
work directly embeds such high-level languages in a manner
that completely abstracts from the control approach specific
details by the use of the generic domain description compo-
nent in (C1).

C3. UNDERLYING QUALITATIVE PHYSICS

Of key interest to this work is to operationalize the notion of a
domain-independent qualitative spatial theory, which is rep-
resentative of an underlying ‘qualitative physics’ that is appli-
cable for a wide-range of dynamic spatial domains/systems.
Here, by a dynamic spatial system, we refer to a specializa-
tion of the dynamic systems [Sandewall, 1994] concept for
the case where a domain theory consists of changing quali-
tative spatial relationships pertaining to arbitrary spatial as-
pects such as the orientational [Freksa, 1992, Moratz et al.,
2000], directional [Frank, 1996, Ligozat, 1998] and topolog-
ical [Randell et al., 1992] spatial dimensions. Basically, what
this implies is that spatial relationships are modelled as time-
dependent properties (i.e., fluents) and the manner in which
they change are strictly governed by the rules (conceptual
neighborhoods, compositional consistency and so forth) that
are intrinsic to a particular spatial calculus (e.g., topologi-
cal or orientation calculi) that is being modelled as a part of
the underlying qualitative physics. This notion of a domain-
independent qualitative spatial theory within the framework
is primarily used as a means to demonstrate the applicability
of (existing) qualitative spatial models relevant to different
aspects of space in realistic dynamic spatial scenarios. In ad-
dition, such a theory has the advantage of being general and
re-usable in a wide-range of spatial domains. In [Bhatt and
Loke, 2008], we have presented an in-depth study of realiz-
ing such a domain-independent spatial theory in the context
of the situation calculus formalism and presently, work is is
progress to extend the approach therein to event calculus and
fluent calculus.

C4. APPLICATION PLATFORM INDEPENDENCE

It is necessary that the framework be independent of any par-
ticular robotic system/platform or agent simulation environ-
ment thereby ensuring applicability in a wide-range of real
or simulated environments. Basically, an adequate level of
abstraction between the experimental framework and robotic
hardware and simulated systems is necessary. Toward this
end, the framework consists of a Controller Communication
Interface’ (CCI) that provides the necessary abstraction be-
tween robotic or simulation platforms and the experimental
framework. This independence is achieved by the generic
CCI by explicitly defining all possible modes of communica-
tion (e.g., by way of serializing control actions to the robot’s
actuators and the inflow of sensing information) between the
framework and the external world, which the framework is
being interfaced with. Other details are included in section 3
(T3).

3 TECHNICAL OVERVIEW AND PROGRESS

The discussion in section 2 is intended to provide an overview
of the complete framework, as it is presently envisaged. In
this section, we report the preliminary progress in that di-
rection and highlight our working exemplar that implements
parts of the proposed framework. Because of the work-
in-progress nature of the proposal, we only discuss aspects
where conclusive implementations have been realized.

T1. THE CONTROL APPARATUS – REASONING
ABOUT ACTION AND CHANGE

The framework presently embeds control approaches based
on the STRIPS, BDI and an existing interpreter for the sit-
uation calculus based language INDIGOLOG [Giacomo and
Levesque, 1999]. Without going into the details of any of
these approaches, we would like to mention that the case
of the STRIPS and BDI based control approaches is trivial
in comparison to embedding the interpreter for INDIGOLOG.
Indigolog supports the incremental execution of high-level
agent control programs through the interleaving of planning,
sensing and executing actions in the real/simulated world, i.e.,
sensing affects subsequent computation. The present commu-
nication controller interface (see T2) is minimal and has been
designed to conform to the requirements of the INDIGOLOG
interpreter, namely – serializing primitive actions execution
commands to an arbitrary sink that is connected to the con-
trol module, reporting of exogenous events from the external
world back to the control module and the capability to per-
form sensing actions to determine the state of certain prop-
erties of the world. The inclusion of the control approaches
based on event calculus and fluent calculus is subject to fur-
ther work and the completion of a complete working exem-
plar consisting of only STRIPS, BDI and INDIGOLOG.

T2. CONTROLLER COMMUNICATION INTERFACE

In the present exemplar, the controller communication
interface has been designed to comply with an exist-
ing robotic hardware abstraction platform, namely the
PLAYER/STAGE/GAZEBO project that available in the open-
source domain [Gerkey et al., 2003]. With a network-centric
client-server model, PLAYER provides an interface to a vari-
ety of robot and sensor hardware and allows for robot control
programs to be written in any programming language and to
run on any computer with a network connection to the robot.
Since it is not an objective of this project to directly investi-
gate the seamless integration of arbitrary real robotic or simu-
lation platform, using the robot control abstractions provided
by the PLAYER system within our exemplar is advantageous
because of the following reasons:

1. PLAYER uses a generic API to control a wide range of
robotic platforms thereby maximizing applicability in
realistic applications

2. The accompanying STAGE and GAZEBO projects pro-
vide accurate physical simulators for the 2D and 3D case
respectively that may be transparently used in conjunc-
tion with the PLAYER system, i.e., experiments may di-
rectly switch between real robotic and simulated modes

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

9

(a) Laser Guided Mobile Humanoid Gripper (b) Humanoid in Action

Figure 2: A Simulated Delivery Robot

without any change in the overall system architecture,
and finally

3. The PLAYER/STAGE/GAZEBO project is open-source
and continuously being enhanced and updated, which is
clearly desirable from a long-term usability viewpoint.

Note that a full-integration of the PLAYER system being
an open-ended task is considered beyond the scope of this
project. However, working examples for a few PLAYER com-
patible robotic platforms in the context of the CCI have been
demonstrated (see T3 and T4). To re-iterate, the main aim
of this project is to develop a framework that can be utilized
for high-level control and decision-making. As such, we only
implement as much low-level motion control or a primitive
skill set as is necessary for us to illustrate the utility of the
framework for this purpose.

T3. A MOBILE HUMANOID ROBOT

The BANDIT model available within the GAZEBO simulator
has been modified and extended to realize a laser-guided, mo-
bile and grasp capable humanoid robot (see Fig. 2). The
humanoid model consists of two simulated SICK lasers for
simultaneous forward and backward alignment, a gripper to
grasp and lift idealized objects, and a moving platform lo-
cated at the intrinsic front of the bot on/from which objects
may be loaded/unloaded. Indeed, the entire humanoid is
mounted on a Pioneer 2DX that is capable of moving around
using differential motors. When big objects that obstruct the
robot’s view are loaded on this platform, the backward laser
is used for purposes of movement and alignment (see Fig.
2(b)). The model functions as one unit and is capable of
moving around, performing turn actions at varying degrees
and picking-up and dropping objects. This primitive skill
set is sufficient for our exemplary purposes of realizing one
complete exemplar that has high-level, logic-driven reasoning
with qualities that is completely abstracted from the precise
low-level motion control that occurs within the GAZEBO sim-
ulator.

T4. DEMONSTRATIVE SCENARIOS

Two exemplary scenarios have been implemented to realize
a fully-functioning system consisting of high-level reasoning
on the one hand and low-level motion control with the sim-
ulated humanoid robot on the other. One scenario consists
of a delivery system that delivers objects from one location
to another in an idealized 3D world. Another scenario in-
volves the same simulated robot performing a room-clearing
task; here, the objective is to re-arrange a set of objects in a
room in a pre-specified manner. Indeed, both scenarios uti-
lize the same set of primitive skills in so far as the movement
and object manipulation are concerned. Note that given the
outlook of this work (see section 4), we are intentionally fo-
cusing on problems that involve qualitative spatial reasoning
abilities with orientation and topological information.

4 OUTLOOK
Present work is focused on developing a complete exemplar
of the overall framework as proposed in section 2. Toward
that end, of primary importance is incorporating a PDDL
based domain description language and its mapping to the
domain-theory and behavior specification constructs as re-
quired by the situation calculus based INDIGOLOG. Prelimi-
nary studies show that such a language subsumes similar re-
quirements of the STRIPS and BDI control approaches. Sec-
ondarily, albeit purely in the context of the situation calculus,
we are also integrating formal spatial (intrinsic orientational
and topological) calculi in a way such that qualitative spatial
reasoning in the form of consistency and conceptual neigh-
borhood based dynamics may be utilized in arbitrary spatial
scenarios. The development and illustration of a test-suite
of problems in spatial control, primarily encompassing spa-
tial planning and decision-making in real robotic-control and
simulated environments is one of the main aims of this re-
search. The test problems would be used to determine the
feasibility of the implemented control approaches and also to
perform empirical comparisons amongst them. In addition,
they would also be extensively documented from an illustra-
tive viewpoint so as to serve as examples for the utilization of

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

10

the experimental framework by other users or to be used for
pedagogical purposes.

ACKNOWLEDGMENTS
The author acknowledges funding provided by the ALEXANDER

VON HUMBOLDT STIFTUNG (GERMANY) toward this project. This
work originated and benefited from my previous collaboration with
Maurice Pagnucco (UNSW, AUSTRALIA). Practical contributions
by Sanchit Sood (IIT BOMBAY, INDIA) and Hemant Agrawal (IIT
ROORKEE, INDIA) in implementing the low-level control with
PLAYER/GAZEBO are acknowledged.

REFERENCES
M. Bhatt. (Some) Default and non-monotonic aspects of qual-

itative spatial reasoning. In AAAI-08 Technical Reports,
Workshop on Spatial and Temporal Reasoning, pages 1–6,
2008. ISBN 978-1-57735-379-9.

M. Bhatt and S. Loke. Modelling dynamic spatial systems in
the situation calculus. Spatial Cognition and Computation,
8(1):86–130, 2008. ISSN 1387-5868.

M. Bratman. Intention, Plans, and Practical Reason. Harvard
University Press, Cambridge, MA, 1987.

J. Claßen, P. Eyerich, G. Lakemeyer, and B. Nebel. Towards
an integration of golog and planning. In M. M. Veloso,
editor, IJCAI, pages 1846–1851, 2007a.

J. Claßen, Y. Hu, and G. Lakemeyer. A situation-calculus
semantics for an expressive fragment of pddl. In AAAI,
pages 956–961. AAAI Press, 2007b. ISBN 978-1-57735-
323-2.

A. Cohn and S. Hazarika. Qualitative spatial representation
and reasoning: An overview. Fundam. Inf., 46(1-2):1–29,
2001. ISSN 0169-2968.

G. De Giacomo, Y. Lésperance, and H. J. Levesque. Con-
Golog, A concurrent programming language based on sit-
uation calculus. Artificial Intelligence, 121(1–2):109–169,
2000.

R. E. Fikes and N. J. Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. In
J. Allen, J. Hendler, and A. Tate, editors, Readings in Plan-
ning, pages 88–97. Kaufmann, San Mateo, CA, 1990.

A. U. Frank. Qualitative spatial reasoning: Cardinal direc-
tions as an example. International Journal of Geographi-
cal Information Science, 10(3):269–290, 1996.

C. Freksa. Conceptual neighborhood and its role in temporal
and spatial reasoning. In M. Singh and L. Travé-Massuyès,
editors, Decision Support Systems and Qualitative Reason-
ing, pages 181–187. North-Holland, Amsterdam, 1991.

C. Freksa. Using orientation information for qualitative spa-
tial reasoning. In Proceedings of the Intl. Conf. GIS,
From Space to Territory: Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, pages 162–178,
London, UK, 1992. Springer-Verlag. ISBN 3-540-55966-
3.

B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage
project: Tools for multi-robot and distributed sensor sys-

tems. In ICAR 2003, pages 317–323, Coimbra, Portugal,
June 2003.

G. D. Giacomo and H. J. Levesque. An incremental in-
terpreter for high-level programs with sensing. In H. J.
Levesque and F. Pirri, editors, Logical Foundation for cog-
nitive agents: contributions in honor of Ray Reiter, pages
86–102. Springer, Berlin, 1999.

H. Grosskreutz and G. Lakemeyer. cc-Golog: Towards More
Realistic Logic-Based Robot Controllers. In NMR-00,
2000.

R. Kowalski and M. Sergot. A logic-based calculus of events.
New Gen. Comput., 4(1):67–95, 1986. ISSN 0288-3635.

G. Lakemeyer and H. Grosskreutz. On-line execution of cc-
golog plans. In IJCAI, pages 12–18, 2001.

H. Levesque and G. Lakemeyer. Chapter: Cognitive robotics.
In V. Lifschitz, F. van Harmelen, and F. Porter, editors,
Handbook of Knowledge Representation. Elsevier, 2007.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B.
Scherl. Golog: A logic programming language for dy-
namic domains. J. Log. Program., 31(1-3):59–83, 1997.

G. Ligozat. Reasoning about cardinal directions. J. Vis. Lang.
Comput., 9(1):23–44, 1998.

J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In B. Meltzer
and D. Michie, editors, Machine Intelligence 4, pages 463–
502. Edinburgh University Press, 1969.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. PDDL – The Plan-
ning Domain Definition Language – version 1.2. In Techni-
cal Report CVC TR-98-003, Yale Center for Computational
Vision and Control, 1998.

R. Moratz, J. Renz, and D. Wolter. Qualitative spatial reason-
ing about line segments. In ECAI, pages 234–238, 2000.

E. T. Mueller. Discrete event calculus reasoner. In System
Documentation, IBM Thomas J. Watson Research Center,
2007. URL http://decreasoner.sourceforge.
net/.

D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based
on regions and connection. In KR’92. Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Third International Conference, pages 165–176. Morgan
Kaufmann, San Mateo, California, 1992.

E. Sandewall. Features and Fluents (Vol. 1): The Represen-
tation of Knowledge about Dynamical Systems. Oxford
University Press, Inc., New York, NY, USA, 1994.

M. Shanahan. Solving the frame problem: a mathematical in-
vestigation of the common sense law of inertia. MIT Press,
1997. ISBN 0-262-19384-1.

M. Thielscher. Introduction to the fluent calculus. Electron.
Trans. Artif. Intell., 2:179–192, 1998.

M. Thielscher. Flux: A logic programming method for rea-
soning agents. Theory Pract. Log. Program., 5(4-5):533–
565, 2005. ISSN 1471-0684.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

11

http://decreasoner.sourceforge.net/
http://decreasoner.sourceforge.net/

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

12

An Incremental Approach to Adaptive Integration of Layers of a Hybrid Control
Architecture

Matthew Powers and Tucker Balch
College of Computing,

Georgia Institute of Technology
mpowers@cc.gatech.edu, tucker@cc.gatech.edu

Abstract
Hybrid deliberative-reactive control architectures
are a popular and effective approach to the control
of robotic navigation applications. However, due to
the fundamental differences in the design of the re-
active and deliberative layers, the design of hybrid
control architectures can pose significant difficul-
ties. We propose a novel approach to improving
system-level performance of hybrid control archi-
tectures, by incrementally improving the delibera-
tive layer’s model of the reactive layer’s execution
of its plans. Incremental supervised learning tech-
niques are employed to learn the model. Quanti-
tative and qualitative results from a physics-based
simulator are presented.

1 Introduction and Related Work
Hybrid deliberative-reactive control architectures for robotic
navigation have long been an active area of research. Despite
their success, open questions remain how to best integrate the
layers to maximize overall system performance. In this work,
we propose a novel method to improve the integration of de-
liberative planning and reactive control in a robotic naviga-
tion system. In particular, we will use supervised machine
learning techniques to improve the deliberative layer’s model
of the reactive layer’s interpretation of its plans.

Arkin’s AuRA architecture [Arkin and Balch, 1997] and
Gat’s Atlantis architecture [Gat, 1991] are early examples of
hybrid deliberative-reactive architectures. In both, the rea-
soning done by the deliberative layer is fundamentally dif-
ferent from that done by the reactive layer. The deliberative
layer works to achieve global goals based on world models.
The reactive layer works to achieve local constraints based
on current sensor input. Each architecture suggests methods
for combining the globally-based deliberative input with the
locally-based reactive reasoning.

Many modern systems use an implementation of a hy-
brid layered approach to robot control architecture, using
decoupled layers of functionality to satisfy both the robot’s
immediate constraints and its longer-term objectives. In
the case of robot navigation (especially in the area of field
robotics), many modern architectures make use of a lower-
fidelity global deliberative planner and a higher-fidelity local

reactive controller [Albus, 2002], [Thrun et al., 2006], [Urm-
son et al., 2008].

Finding a compromise between global objectives and lo-
cal constraints is not always easy, and often the tradeoffs
have to be empirically “fine-tuned” by the robot software
designer. Either the deliberative layer’s model of the world
and the robot, or the reactive layer’s interpretation of the de-
liberative layer’s input must be adjusted. This process can
be time-consuming and is subject to human interpretation of
the robot’s performance. It can also simply be difficult for
a human to make sense of how all the degrees of freedom
that a complex software system may contain might affect the
robot’s system-level performance. Because of these difficul-
ties, a body of work has evolved promoting learning across
layer boundaries or across task decompositions.

Early work in reinforcement learning across task decom-
position was done by Lin [Lin, 1993]. In Lin’s work, the
system designer decomposed the robot’s task into low-level
skills and high-level skills (which make explicit use of the
low-level skills) that the robot will need to complete the task.
Q-learning was used to first learn the low-level skills, then
the high-level skills. Similar to Lins work, Stone [Stone,
1998] implemented an approach to task decomposition and
learning within the context of robot soccer. Rather than
using reinforcement learning at all layers, Stone relied on
human insight to choose appropriate learning techniques at
each layer. Higher-level layers were learned making explicit
use of learned low-level layers. In [Balch, 1998], Balch
demonstrated the use of reinforcement learning for robots to
learn a sequential layer strategy in the form of a finite state
automata (FSA), based on a designer-implemented reactive
layer. Balch implemented a set of behavioral assemblages,
defined states in an FSA mapping to each behavioral assem-
blage, and used Q-learning to learn transitions between the
states in the FSA.

Beyond the difficulties of designing the appropriate models
for use in a hybrid control architecture, it may be desirable to
eliminate a priori models altogether. For example, a situation
may call for a robot being placed in a new environment and
learning how best to navigate within the new environment.
Working within this scenario, a significant body of research
has also been built around learning models of traversability by
experience. In [Sun et al., 2006], used short-range stereo vi-
sion as a supervisory signal to learn models based on longer-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

13

range color vision. Note, however, that this work does not ac-
tually measure the robot’s performance within environment,
but rather finds a mapping from learned color-based models
to a priori stereo-based models of traversability.

We propose an approach to improving system-level perfor-
mance of hybrid control architectures by learning models of
the reactive layer’s execution of the deliberative layer’s plans,
based on measurements of actual executions. Our approach
collects training data by measuring the performance of the ex-
ecution of the plans. Supervised machine learning techniques
(in particular, an implementation of the k-nearest neighbor
algorithm), are used to abstract that performance to predict
performance in other environments. Then, this learned model
is fed back to the planner for use in creating plans with better
overall performance.

2 Representation
Following the pattern of other hybrid control architectures,
we divide the architecture into two distinct components, the
reactive layer and the deliberative layer. The reactive layer
is responsible for monitoring the robot’s sensors, perform-
ing low-level navigation and decision making, and actuating
the robot’s motors. We model the robot’s reactive layer as
a continuous controlled dynamical system. The deliberative
layer is responsible for integrating sensor input into maps,
and planning routes and actions toward a given goal. We
model the deliberative layer as a discrete process providing
regular input to the reactive layer.

2.1 Reactive Layer
We begin by modeling the robot as a controlled dynamical
system,

ẋ = f (x,u), x ∈ Ra, u ∈ Rb (1)

which exists in a world W ⊂ Rd .
We are given a measurement equation,

y = hy(x) (2)

that provides access to the state of the system. Additionally,
we are given another measurement equation that gives sen-
sory access to the state of the world, hs(x,w). We then define
the array s as the collection of all observable sensory input:

s = {hs(x,w)}w∈W (3)

We can then close the loop, defining the control input u as
a function of the measurements of both the system state and
the environment state. Thus,

u = g(y,s) (4)

2.2 Deliberative Layer
We model the robot’s deliberative layer as a regularly up-
dating discrete-timed event system which updates at times
t0, t1, . . . , t f inal , where ti − ti−1 = ∆t, ∆t > 0. These inter-
vals account for the practical requirements of the execution
of complex algorithms and management of large data sets.

Given that the robot is using a map to guide its path plan-
ning algorithms, we define the map M as an integrated set
of sensory input. In each update cycle, the most recent set

of sensory input, st is integrated into the map, relative to the
most recent measured state of the system, yt , by the integra-
tion function m,

Mt = m(st ,yt ,Mt−1) (5)

We assume m is a non-invertable function. That is, given Mt
we cannot directly recover {(s0,y0), (s1,y1), . . . , (st ,yt)}.
This is an important point, as given Mt , we cannot directly
recover the reactive layer’s control output, g(yt ,st)

Given that the world W ⊂ Rd is compact and connected,
assume W is partitioned into a set of n regions,

R = {ri}n
i=1 (6)

such that ⋃
r∈R

r = W (7)

and
ro

i

⋂
ro

j = φ , ∀i, j, i 6= j (8)

where ro denotes an interior region.
For each region, we are given a collection of m control

laws,
Gro = {gi(y,s)}m

i=0, ∀ro ∈ R (9)

and a transition function d(ro,M,g) which provides a map-
ping from an interior region and a control law to the next
region the control law will drive the robot toward. Intuitively,
we can think of this is as the expected outcome of the control
law. This mapping is important to the planning process as
it provides a model of the outcome of the action of employ-
ing a particular control law. We are also given a cost model,
c(ro,M,g) that provides an expected cost of traversing region
ro, using the control law g, given the map M.

Given a goal region, rgoal , and a starting region, rstart ,
this representation is easily mapped into a graph-based
model (compatible with many planning algorithms), Γ =
(V,E, l,vstart ,vgoal), where:

• V is a set of vertices, directly corresponding to the set of
interior regions, {ro}ro∈R

• E is a set of directed edges, E ⊆ V ×V . This set of
edges corresponds to the connectivity described by the
transition model, E = {ro×d(ro,M,g)}ro∈R, g∈Gro

• l is a cost function l : E → R+ directly correspond-
ing to the cost model c(ro,M,g), where the edge corre-
sponding to the weight is given by the transition model,
e = (ro×d(ro,M,g)), e ∈ E.

• vstart and vgoal are the starting and goal vertices, respec-
tively. These vertices correspond directly to the regions
ro

start and ro
goal .

Within this graph-based representation, the path planning
problem can be defined as selection a sequence of edges

Plan = {e0 = (vstart ,v1), . . . ,eN = (vgoal−1,vgoal)} (10)

to minimize the total cost

Cost = ∑
e∈Plan

l(e) (11)

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

14

In this case, the set of edges is provided by the transition
model, d(ro,M,g), which is a function of the selection of of
the control law, g. We can then more precisely define the
planning problem as choosing a mapping b ∈ B (where B is
the set of all possible mappings), from each ro to a g ∈ Gro ,

ẋ = f (x,g(y,s)), ∀x | p(x) ∈ ro, g = b(ro) (12)

(where p(x) ∈W is the position of the system) , such that

b = argmin
b∈B

goal

∑
i=0

c(ro
i ,M,b(ro

i)) (13)

where
ro

i+1 = d(ro
i ,M,b(ro

i)) (14)

2.3 Learning
Two components of the deliberative layer’s planning process
rely primarily on a priori models of the reactive layer’s execu-
tion of the provided plans. The transition model, d(ro,M,g)
predicts the the next region the system will enter, given the
region the robot is currently in and the control law the robot
is currently executing. The cost model c(ro,M,g) predicts the
cost incurred by the system until the next region is reached.
It is the goal of this work to improve the integration of the
deliberative and reactive layers by learning a cost model that
better represents the cost actually incurred by the reactive ex-
ecution of the plan. Improving performance by learning the
transition model as well will be discussed further in the Fu-
ture Work section.

We begin by defining a measurement function, mc(x,ro)
which measures the cost incurred by the execution of a con-
trol law in region ro given map M. We define the learning
problem as choosing a cost model that best predicts the mea-
sured cost, given all measurements up to time t,

ct = argmin
c∈C

E[|mc(x,ro)−c(ro,M,g)|] | {mc(x,ro)}t (15)

where C is the set of all possible cost functions. This opti-
mization is over an expectation not only because of possible
noise in the sensory information, but because, as noted ear-
lier, the mapping function is non-invertable. Therefore, the
cost model, which is a function of M, cannot directly access
the reactive output measured by the measurement function.
The best the cost model can do is a prediction of the reactive
output. Our goal is to minimize the error in this prediction.

3 Implementation
To demonstrate the capabilities and performance of the pro-
posed system, a simulated robot and hybrid control architec-
ture was implemented. A car-like robot was implemented in
the Gazebo simulation environment [Gerkey et al., 2003].
The robot’s physical state is represented as simply its 2-
dimensional position and heading,

x =

[x
y
θ

]
(16)

The robot has control over its translational velocity, v and its
steering angle, which is proportional to the curvature of its
path, κ ,

u =
[

κ

v

]
(17)

Thus, the dynamics of the robot are defined,

ẋ =

[v · sinθ

v · cosθ

v · κ

]
(18)

The simulated robot is equipped with sensors to measure
its own state, and the state of the world. A simulated GPS
module provides the robot with a measurement of its own
state,

y =

[x
y
θ

]
(19)

Simulated laser range-finders provide measurements of the
state of the world,

hs(x,w) =
{

o(w) if ‖p(x)−w‖ ≤ ∆

φ otherwise (20)

where ∆ is the range of the measurement system, and o(w) is
the occupancy of the point w ∈W . The occupancy of a point
w is defined as:

o(w) =
{

1 if the point w is occupied
0 else (21)

3.1 Reactive Layer
The reactive layer is implemented in a behavior-based voting
design, explained in detail in [Wooden et al., 2007]. In this
design a number of behaviors evaluate candidate actions over
a short temporal scale, each behavior representing a specific
interest pertaining to the robot’s objective.

In this implementation, as shown in Figure 1, the behaviors
reason over constant curvature arcs. Each behavior distributes
an allocation of votes over an array of potential arcs for the
robot to navigate along. The behaviors can allocate votes for
arcs that work to achieve its interests, or against arcs that are
detrimental to its interests. In addition to distributing votes
for or against arcs, behaviors assign a maximum allowable
velocity, associated with each arc. Behaviors need not neces-
sarily express an interest across both curvature and velocity.
A behavior may vote for curvatures and leave the allowable
velocities set to the robot’s maximum velocity, it may cast no
votes for or against curvatures and express its interest across
the allowable velocities, or it may express its interest across
both dimensions.

To choose a curvature and velocity for the robot to execute,
an arbiter sums the votes cast by each behavior for each cur-
vature arc, weighting the votes for each behavior according
to a predetermined weighting scheme. It selects for execution
the curvature arc with the highest total of votes. It then se-
lects for execution the minimum of the maximum allowable
velocities assigned by the respective behaviors to the selected
curvature arc. The selected curvature and velocity are sent on
to low-level controllers for execution.

Five behaviors were used in this implementation (three of
which are diagrammed in Figure 1):

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

15

(a) The Move to Waypoint behavior.

(b) The Avoid Obstacles behavior.

(c) The Maintain Headway behavior.

Figure 1: Three of the behaviors used in the implementation of the reactive layer. In (a), the Move to Waypoint behavior votes
in support of curvatures that take the robot closer to the provided waypoint. In (b), the Avoid Obstacles behavior votes against
curvatures that take the robot toward sensed obstacles. In (c), the Maintain Headway behavior sets a maximum allowable
translational velocity for each curvature, with respect to sensed obstacles. An arbiter tallies the weighted votes provided by
the set of behaviors, and outputs the curvature with the most votes, and the minimum allowable translational velocity for that
curvature.

• Move to Waypoint - shown in Figure 1(a), allocates pos-
itive votes to arcs according to a linear control law relat-
ing the local heading to the waypoint to a commanded
curvature.

• Avoid Obstacles - shown in Figure 1(b), allocates nega-
tive votes to arcs according to the distance along the arc
that the arc crosses into the configuration space around
a detected obstacle. Arcs that do not cross into the con-
figuration space of the obstacle are not voted against.

• Maintain Headway - shown in Figure 1(c), sets maxi-
mum allowable velocities for each arc according to the
distance along the arc that the arc crosses into the con-
figuration space around a detected obstacle. If the arc
does not cross into the configuration space of the ob-
stacle, the robot’s maximum speed is assigned. If the
arc crosses into the configuration space of the obstacle
within a parameterized safety distance, the maximum al-
lowable velocity is zero.

• Slow for Congested Areas - sets maximum allowable ve-
locities for each arc according to the distance along the
arc that the arc crosses into an intentionally large config-
uration space around a detected obstacle. If the arc does
not cross into the the configuration space of the obstacle,
the robot’s maximum speed is assigned.

• Slow for Turns - sets a maximum allowable velocity for
each arc according to a parameterized maximum allow-
able rotational velocity. If the calculated maximum al-
lowable velocity is larger than the robot’s top speed, the
robot’s top speed is assigned.

In this implementation, the set of control laws Gro is pro-
vided by parameterizing the given set of behaviors with a
waypoint from each adjacent region. (i.e., each member of
the set of control laws drive the robot toward one of the ad-

jacent regions, using the full compliment of behaviors.) The
transition model d(ro,M,g) is simply defined as mapping to
the region associated with the waypoint parameterizing the
control law g, regardless of the map.

3.2 Deliberative Layer
The deliberative layer is implemented as a global path planner
over a relatively high-resolution occupancy grid. As sensory
information is accumulated in the local frame it is integrated
into the global map based on the robot’s current global state
measurement. Detected obstacles are placed into grid cells
based on their discretized global position. Each grid cell can
be marked as either occupied or unoccupied. Obstacles asso-
ciated with unoccupied cells cause the cell to be marked as
occupied. Obstacles associated with occupied cells have no
effect on the cell; the cell remains marked occupied.

The grid cells are then grouped into regions, as depicted
in Figure 2(b). A count of occupied grid cells is kept within
each region. This count is used by the planning algorithm in
evaluating the cost of traversing each region.

To represent the connectivity between the regions, a graph
is overlaid on the map, as shown in Figure 2(b). One graph
vertex is placed at the center of each region. Edges are
added between contiguous nodes. Figure2(b) depicts a four-
connected graph based on the structure of the occupancy grid.
The cost of traversing each edge is proportional to the ex-
pected time to move between its source node and destination
node. The time to move between nodes is modeled as the
distance between the nodes divided by the expected average
velocity of the robot over that distance. The naı̈ve planner
uses a binary model of the robot’s velocity. If the count of oc-
cupied grid cells within the region associated with either node
is larger than a parameterizable count, the expected velocity
is zero (i.e. the edge is not traversable and is assigned an in-
finite cost). Otherwise, the expected velocity is the robot’s

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

16

(a) The occupancy grid. (b) The occupancy grid divided
into regions, and overlaid with a
graph.

Figure 2: The occupancy grid, regions and graph used by the
deliberative layer. In (a), the occupancy grid is shown. The
world is discretized into a grid. Each cell represents either oc-
cupied (black) or open (white) terrain. In (b), the occupancy
grid is divided into regions (shown by thicker lines). A graph
is overlaid on regions, describing the connectivity of the map.
Planning is done over the graph, using the underlying occu-
pancy grid as input for the cost model.

top speed. This graph structure is a suitable data structure
for many planning algorithms. In this implementation, an in-
stance of the D*-Lite [Koenig and Likhachev, 2002] [Koenig
and Likhachev, 2005] algorithm is employed.

3.3 Learning
The learning component of this approach is implemented
within a supervised learning paradigm. To keep the learn-
ing problem tractable, it is important to create a compact, yet
meaningful representation of the robot’s experiences execut-
ing proposed planning segments. We define the length of a
learning experience to be time to move from one region, ro to
the next region in the plan, d(ro,M,g), given the control law
g provided by the planning algorithm. We use the following
representation of a learning experience:

Exp = (g,Mlocal) (22)

where Mlocal is a local representation of the map, M. To take
advantage of symmetry in the problem, we orient the experi-
ence into the robot’s local frame. That is, rather than encod-
ing the segments of the plan as “move north” or “move east”,
it is more general to encode the robot’s experiences as “move
forward” or “move right”. A more general encoding of expe-
riences makes learning over these experiences more tractable,
as it reduces the dimensionality of the problem. Figure 3 is a
graphical representation of the robot’s planning experience.

A supervisory signal is provided by the measurement func-
tion mc(x,ro), which measures the reactive layer’s interpre-
tation of the commanded plan. As shown in Figure 3(b),
the measurement function measures the average speed of the
robot during the experience.

As experiences are collected, they are integrated into the
learning algorithm. The learner uses the experiences to ex-
trapolate expected results from new proposed experiences. In

Next Node

(Right)

Last Node

(Back)

Current Node

(a) Learning experience setup

Next Node

Last Node

Current Node

Measured

Average Velocity

(b) Learning experience mea-
surement of average velocity be-
tween regions

Figure 3: A depiction of the encoding of the learning expe-
rience. In (a), the learning experience is setup. The robot is
shown in the center of the diagram. The next planned way-
point is represented by the graph vertex to the right of the
robot. The local map, out to the range of the robot’s sensors
is included under the graph. In (b), the robot has completed
the experience. The supervisory signal (in this case, average
velocity) is measured and provided to the learning algorithm,
along with the experience representation.

this implementation, the learned model of expected velocity
is used by the global planner to plan subsequent navigation
paths. The planner uses the model to evaluate the expected
cost of traversing an edge, in terms of expected time to tra-
verse the edge. To evaluate the cost of an edge, the edge is en-
coded in terms of a planning experience. The learned velocity
model returns an expected velocity over the edge. The time-
based cost model is obtained by dividing the distance between
the source node and the destination node by the expected ve-
locity. The planning algorithm plans over these costs to find
the fastest route.

4 Experimental Setup and Results
4.1 Experimental Setup
Three complex environments were designed within the
Gazebo simulation environment. The environments used are
shown in Figure 4. Environment 4(a) was used for gathering
training data. Environment 4(b) was used for running tests
comparing different systems. Environment 4(c) was used to
demonstrate the qualitative behavior of the system.

To effectively demonstrate differences in performance for
different amounts of training data, data was collected a pri-
ori. Cost models were built using different amounts of train-
ing data (ranging from 100 to 5000 experiences). Each cost
model was tested independently without incremental learn-
ing. The performance of each cost model was then compared,
providing data on how performance improves with the num-
ber of training instances.

Data was gathered in the training environment by tasking
the robot to achieve a series of randomly generated goals
around the environment, using the naı̈ve planner and the
above described reactive layer. Every time the robot achieved

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

17

(a) The training environment (b) The quantitative testing environment (c) The qualitative testing environment

Figure 4: The environments used in training and testing. The environments were built in the Gazebo simulation environment.
Environment (a) was used in gathering training data for the learning process. Environment (b) represents a slightly more
complex environment than (a), and was used for quantitative testing. (c) represents a plausible environment, consisting of a
path through a dense forest, and was used for qualitative testing.

a waypoint the robot’s experience was recorded, including the
local map, the robot’s average velocity, the commanded way-
point, and the waypoint actually achieved. Approximately
5000 learning examples were collected.

Several different supervised learning algorithms were eval-
uated for use. The Weka machine learning environment
[Frank et al., 2005] provided a library of community-
supported implementations of well known algorithms. For
learning prediction of the robot’s velocity (a real-valued sig-
nal), we evaluated the k-nearest neighbor algorithm for sev-
eral values of k, a multi-layer perceptron network, linear re-
gression, and the naı̈ve strategy of always assuming the robot
travels at its maximum speed.

Models were built from the training data, using each algo-
rithm. Cross-validation tests on the training data were per-
formed to evaluate the effectiveness of each algorithm. Ta-
ble 1 displays the cross validation results for each algorithm
on the velocity data. The k-nearest neighbor algorithm with
k = 5 produced the highest correlation and nearly the lowest
average relative error of the algorithms tested, and was cho-
sen for use in testing. Table 2 displays cross validation results
for instances of the k-nearest neighbor algorithm for various
numbers of training examples. The results show a clear trend
of improvement as the number of training examples increases.

The learned models were then incorporated into the cost
function of the global planner. The naı̈ve system was com-
pared to the system using the learned model. Each system
was tasked with achieving a sequence of goals criss-crossing
the test environment. This sequence of goals totaled a piece-
wise straight-line distance of over 1500 simulated meters.
Results were compiled comparing the average time to com-
plete each goal between different systems.

In addition to quantitative experiments, a qualitative exper-
iment was performed to demonstrate, in an intuitive way, the
effect learning had on the overall system performance. An en-
vironment was constructed to resemble an open path through
a wooded area, shown in Figure 4(c). The wooded area is
sparse enough that the robot is capable of finding a path be-
tween the trees, but would travel that path slowly due to its
tendency to drive slowly in tight spaces and slow down for

Naı̈ve KNN
k = 50

KNN
k = 15

KNN
k = 5

KNN
k = 2

Average
Relative
Error

106% 80% 72% 64% 61

Correlation -.44 .57 .62 .65 .63

Table 1: Results of a 10-fold cross validation test on several
learners predicting the robot’s velocity given a proposed plan-
ning transition, using 5000 training examples. The k-nearest
neighbor algorithm with the k-value set to 5 produced the best
results, nearly cutting the average relative error in half, com-
pared to the naı̈ve approach.

n =
100

n =
250

n =
500

n =
1000

n =
2500

n =
5000

Average
Relative
Error

112% 95% 87% 74% 71% 64%

Correlation .33 .43 .49 .54 .56 .65

Table 2: Results of a 10-fold cross validation test on several
k-nearest neighbor instantiations, using varying numbers of
examples to train. The value of k was set to k = 5 throughout
the tests.

the frequent required turns. The robot was tasked with navi-
gating to a goal whose straight-line path would take the robot
through the woods. The plans and resulting paths created by
the naı̈ve system and the system that had learned a cost model
were compared qualitatively and quantitatively.

4.2 Quantitative Results
To demonstrate how the performance of the planner improved
with learning, tests were run with different numbers of exam-
ples used in the learned model. Figure 5(a) shows the trend
of performance improvement over the baseline naive planner.
The learned planner improves significantly with just 100 ex-
amples, and starts a steady upward trend from 500 to 5000

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

18

(a) Performance as a function of number of training instances.
Larger bars indicate better performance.

(b) Significance as a function of number of training instances.
Smaller bars indicate statistically more significant performance.

Figure 5: System performance improvement over the baseline naive planner, as a function of the number of examples used in
training a k-nearest neighbor regression model. (a) shows the improvement over the naive baseline system, while (b) shows the
paired t-test p-value for each instantiation.

(a) Naı̈ve system’s planned route (b) Naı̈ve system’s traveled trajectory

(c) Learned system’s planned route (d) Learned system’s traveled trajectory

Figure 6: In (a), the planned path from the robot to the goal through the “path in the woods” environment using the naı̈ve
planner. The robot is at the bottom of the image. The goal is at the top of the image. The planned path is shown by pink
waypoints. Obstacles in the map are shown in black. In (b), the actual trajectory taken by the system (trajectory in red). In (c),
the planned path from the robot to the goal through the environment, using the learned cost model. The resulting plan is longer
given a constant velocity model of the robot, but when used as input to the reactive layer, as shown in (d), reduces mission time
by 25% over the plan shown in (a).

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

19

examples. Figure 5(b) shows the statistical significance of
each test.

4.3 Qualitative Results
Figure 6 shows the results of the qualitative tests in the path
through the woods environment. Figure 6(a) shows the naı̈ve
planner’s planned route through the environment. Note how
the planned route snakes through the dense obstacle field on
its way to the goal. Figure 6(b) shows the trajectory actually
taken by the robot following the planner’s output. Note that it
departs from the planned route early in the mission. The plan-
ner continues to suggest updated routes based on the robot’s
position, and the robot eventually achieves the goal.

Figure 6(c) shows the route provided by the planner using
both the velocity and transition models. Note that it prefers a
slightly longer (by distance) route that follows the wide path.
Figure 6(d) shows the trajectory actually taken by the robot
following this plan. In this trial, the robot completes the mis-
sion in 25% less time than the naı̈ve planner. This demon-
strates a clear qualitative and quantitative improvement in
system-level performance in a plausible environment.

5 Conclusions and Future Work
In this paper, we propose a novel approach to the problem of
improving system-level performance of a hybrid deliberative-
reactive control architecture for robotic navigation. In par-
ticular, we propose using supervised machine learning tech-
niques to improve the deliberative layer’s cost model, based
on measured performance of the reactive layer’s execution of
plans. The system was implemented in physics-based simula-
tion environment. Quantitative and qualitative experimental
results were compiled and presented.

Certainly more work in the area can be done. For example:
• It is not yet clear if the relatively good performance by

the model using 100 examples is the result of over-fitting
or the ordering of the examples used. In general, how
does the order of training examples affect the learning
process?

• It is not yet clear how map representation effects the
performance of the learning component of the approach.
Can representations be chosen to improve learning?

• While improving the planner’s cost model certainly has
the potential to improve overall system performance,
judging from the trajectory in Figure 6(d), it is appar-
ent that improving the transition model may also have a
significant effect on system performance.

We look forward to exploring these questions in future work.

References
[Albus, 2002] James S. Albus. 4d/rcs: a reference model ar-

chitecture for intelligent unmanned ground vehicles. In
In Proceedings of SPIE Aerosense Conference, pages 1–5,
2002.

[Arkin and Balch, 1997] Ronald C. Arkin and Tucker Balch.
Aura: Principles and practice in review. Journal of Exper-
imental and Theoretical Artificial Intelligence, 9:175–189,
1997.

[Balch, 1998] Tucker Balch. Behavioral Diversity in Learn-
ing Robot Teams. PhD thesis, Georgia Institute of Tech-
nology, December 1998.

[Frank et al., 2005] Eibe Frank, Mark A. Hall, Geoffrey
Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Wit-
ten, and Leonhard Trigg. Weka - a machine learning
workbench for data mining. In Oded Maimon and Lior
Rokach, editors, The Data Mining and Knowledge Dis-
covery Handbook, pages 1305–1314. Springer, 2005.

[Gat, 1991] Erann Gat. Integrating planning and reacting
in a heterogeneous asynchronous architecture for mobile
robots. SIGART Bulletin, 2(4):70–74, 1991.

[Gerkey et al., 2003] Brian P. Gerkey, Richard T. Vaughan,
and Andrew Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In In Proceed-
ings of the 11th International Conference on Advanced
Robotics, pages 317–323, 2003.

[Koenig and Likhachev, 2002] Sven Koenig and Maxim
Likhachev. D*-lite. In National Conference on Artificial
Intelligence, pages 476–483, 2002.

[Koenig and Likhachev, 2005] Sven Koenig and Maxim
Likhachev. Fast replanning for navigation in unknown ter-
rain. IEEE Transactions on Robotics, 21(3):354–363, June
2005.

[Lin, 1993] Long-Ji Lin. Hierarchical learning of robot skills
by reinforcement. In International Conference on Neural
Networks, 1993.

[Stone, 1998] Peter Stone. Layered Learning in Multi-
Agent Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1998.

[Sun et al., 2006] Jie Sun, Tejas Mehta, David Wooden,
Matthew Powers, James Rehg, Tucker Balch, and Mag-
nus Egerstedt. Learning from examples in unstruc-
tured, outdoor environments. Journal of Field Robotics,
23(11/12):1019–1036, November/December 2006.

[Thrun et al., 2006] Sebastian Thrun, Mike Montemerlo,
Hendrik Dahlkamp, David Stavens, et al. The robot that
won the darpa grand challenge. Journal of Field Robotics,
23:661–692, 2006.

[Urmson et al., 2008] Christopher Urmson, Joshua Anhalt,
Hong Bae, J. Andrew Bagnell, et al. Autonomous driv-
ing in urban environments: Boss and the urban chal-
lenge. Journal of Field Robotics Special Issue on the 2007
DARPA Urban Challenge, Part I, 25(1):425–466, June
2008.

[Wooden et al., 2007] David Wooden, Matthew Powers,
Magnus Egerstedt, Henrik Christensen, and Tucker Balch.
A modular, hybrid system architecture for autonomous,
urban driving. Journal of Aerospace Computing, Infor-
mation, and Communication, 4(12):1047–1058, Decem-
ber 2007.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

20

Towards a Hybridization of Task and Motion Planning for Robotic Architectures

Julien Guitton
ONERA - DCSD
Toulouse, France

julien.guitton@onera.fr

Jean-Loup Farges
ONERA - DCSD
Toulouse, France

jean-loup.farges@onera.fr

Abstract
Mission planning for a mobile robot involves sym-
bolic and geometric reasonings. In conventional
robotic architectures, modules in charge of these
reasonings are commonly decoupled. In this pa-
per, we propose a new framework for mission plan-
ning by bringing together a high-level planner and a
low-level reasoner. This framework is based on the
integration of geometric constraints into symbolic
action descriptions and on an interaction protocol
between the symbolic and geometric planners.

1 Introduction
Defining an architecture for autonomous robots implies defin-
ing several control levels from high-level mission manage-
ment to low-level system controllers. Two approaches are
commonly used: deliberative approach in which a high-level
plan is computed and refined through different levels until
obtaining sensor-motor functions, and reactive approach in
which localization functions are directly linked with naviga-
tion functions. However, these methods have the following
drawbacks: the deliberative approach does not allow a quick
reaction to unforseen events. The reactive approach does not
use global knowledge about the environment and thus the pro-
duced action sequence is globally sub-optimal.

Deliberative robotic architectures are commonly defined
by three layers [Alami et al., 1998]: decision level, control
level, and functional level. Decision level includes capacities
of producing a task plan and supervising its execution. Con-
trol level aims at controlling and coordinating execution of
functions while respecting task definitions. Functional level
contains built-in functions and perception capacities.

In this paper, we are interested by planning problems for
a mobile robot, and more particularly, by task planning and
path planning. In architectures designed for this kind of
robots, the task planner is at the decision level and the mo-
tion planner at the control level. Using deliberative three-
layered architectures for mobile robotics has well-identified
problems [Estlin et al., 2001]: they suffer from a high com-
putation time, each level has its own description of the en-
vironment and actions, and translation of computed results
between levels is not easy. In order to overcome these draw-
backs, we investigate the formalization of a strong and clear

link between task planning and motion planning. we adopt an
experimental and pragmatic approach. We start by present-
ing experiments in section 2 which highlight the interest of
delegating motion problems to a specialized planner. These
results provide first hints as to the best way to define the cou-
pling with a task planner. We also discuss these first prop-
erties on planners coupling and relate them to existing work.
Finally, we propose both an abstract model in which motions
are defined at the symbolic level and a protocol between the
reasoning modules in order to formalize in a generic frame-
work the properties of interleaved architectures.

2 Coupling reasoners: a bridge between
robotic architecture levels

Mission planning is performed at the decision level. This
mission planning implies motion management of one or sev-
eral robots. However, motions are computed at the execution
level. Thereby, the high-level planner uses an abstract world
description in a form of a set of waypoints and a set of acces-
sibility relations between them.

In this section, we present results of two experiments that
aim at demonstrating that full delegation of motion planning
to a specialized reasoner allows to obtain faster and better
plans, and that an interleaved execution of both planners en-
ables a faster and better management of events during the
planning process.

2.1 Experimental framework
In these experiments, we link a high-level planner with a path
planner. The high-level planner is a hierarchical task planner
(HTN planner) and the path planner is based on a visibility
graph for the environment description and on the Dijkstra al-
gorithm for path searchs. The graph is composed of 70 ver-
tices and 1126 edges. For the classical approach, the graph is
translated into a set of logical predicates constituting the ini-
tial state of the planning problem. If there is an edge between
vertices v and v’, a predicated (visible v v’ l) is
added to the initial state, where l is the length of the edge.

2.2 Classical vs. hybrid approach
Classical approach corresponds to an abstract mission plan
search, i.e., the high-level planner reasons only on logical
predicates representing the environment. We call ”hybrid

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

21

approach”, the search for a plan in which motions are com-
puted by solving a shortest path problem: given a weighted
graph 〈V,E, l : E → R〉, find a path β from v to v′ so that∑
l(e), e ∈ R is minimal.
The planning domain used in the first experiment is in-

spired by the rover domain proposed at the 3rd International
Planning Competition1: a robot has to collect a set of samples
in the environment while avoiding obstacles.

We compare three different methods. First, classical ap-
proach with blind search, i.e. first waypoint is choosen.
Then, classical approach with nearest-first heuristic search,
i.e. nearest waypoint of the current robot position is chosen.
Finally, hybrid approach i.e. a specialized reasoner is used.
We compare the computation time spent by each method to
find a solution plan as well as the the solution quality in terms
of traveled distance on 15 examples of increasing complexity.

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 C
om

pu
ta

tio
n

tim
e

(in
 s

ec
.)

 number of objectives

using task planner alone
task planner + heuristic

using specialized reasoner

Figure 1: Comparison of the computation time

Figure 1 depicts the evolution of computation time accord-
ing to the complexity (number of objectives) for the three
methods. The computation time is significantly reduced when
using the hybrid one. The evolution of computation time
when the number of goals increases is slower. Indeed, adding
a new goal increases the time by, in average, 50 seconds for
classical approaches against 4 sec. for the hybrid approach.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 d
is

ta
nc

e

 number of objectives

using task planner alone
task planner + heuristic

using specialized reasoner

Figure 2: Comparison of the overall distance

Using a specialized reasoner allows to obtain plans with
a higher quality in terms of path length than classical ap-
proaches (Figure 2) even when a heuristic to improve the
overall traveled distance is used.

1http://planning.cis.strath.ac.uk/competition/

errors hierarchical hierarchical with BT interleaved
0 11 11 11
1 22 22 12
2 52 32 13
3 124 41 14
4 292 49 15
5 677 56 16
6 - 62 17
7 - 67 18
8 - 71 19

Table 1: Number of exchanged requests

Moreover, in this experiment, we used a simple path plan-
ner on a static problem. Mission planning for real-world
problems involves geometric and kinematic constraints when
computing robot motions. These constraints cannot be taken
into account at the symbolic planning level and the resulting
abstract path is not always achievable. In case of failures, re-
planning loops are necessary. The method for coupling the
two planners will strongly impact the time to compute a fea-
sible solution.

2.3 Linking planners
Using a specialized reasoner for some identified subproblems
can reduce the computation time and increase the solution
quality. The question we address is this section is how to
efficiently link the high-level planner with the motion planner.

In three-level architectures, a hierarchy of planners is de-
fined. First, an abstract plan is computed, then motions are
refined while taking into account geometric constraints. An-
other method to bind the two planners is to call the motion
planner each time a motion computation is needed.

In the second experiment, we investigate three coupling
methods: hierarchical, hierarchical with backtrack and in-
terleaved approaches.In the hierarchical approach with back-
track, in case of error, the planning process is restarted at the
unfeasible action while keeping already computed motions.
In hierarchical methods, motion requests are sent after ob-
taining a symbolic plan whereas in the interleaved approach,
they are sent during the task planner execution.

The problem is as follows: a robot has to gather 10 sam-
ples in the environment. For each example, a motion error is
added, i.e. the robot is not at a good location and has to try
another action to achieve its mission.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

 c
om

pu
ta

tio
n

tim
e

(in
 s

ec
.)

 number of errors

hierarchical
hierarchical + BT

interleaved

Figure 3: Comparison of the computation time

Figure 3 illustrates comparison of computation time be-
tween the three presented coupling methods. Using planning

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

22

information to backtrack to the first unfeasible action is more
efficient than using a blind hierarchical approach. However,
the interleaved method still requires a smaller computational
effort. Indeed, if the current specified location is unreachable,
the high-level planner can immediatly backtrack and try an-
other action. Table 1 summarizes the number of requests sent
by the high-level planner to the motion planner. This number
of sent requests evolves linearly with the computation time.
This correlation indicates a causal effect between the number
of paths to be computed and the required computation time.

In conclusion, interleaved plan computation leads to lower
computation time than hierarchical plan computation because
of a lower number of path computation requests.

2.4 Related work
Different methods have been explored in order to take into
account navigation and motion tasks at the mission planning
level. For example, [Brumitt and Stenz, 1998] define a gram-
mar allowing to reason about the mobile parts of the mission.
But the most explored approach is to use domain-specific
planners to assist a general one [Kambhampati et al., 1993;
Lamare and Ghallab, 1998]. These works have been extended
in order to take into account geometric preconditions [Guere
and Alami, 2001]. However, they do not present an efficient
and general framework to bind the high-level mission plan-
ner with specialized reasoners: they are dedicated to specific
problems or use interaction protocols too specialized.

3 Formalizing the coupling
In section 2, we have seen that a specific reasoner is better
suited for managing navigation tasks and that better perfor-
mances are obtained when calls to this reasoner are inter-
leaved with the high-level planning process.

In this section, we introduce a new formalism in order to
express motion conditions for an action achievement at the
symbolic level, and an interaction protocol between the task
planner and the motion planner.

3.1 Action description
Since robot motions are computed by a low-level planner,
symbolic navigation actions are not necessary at the mission
planning level. Instead, it can be assumed that motions are
preconditions to an action achievement. For example, in or-
der to collect a sample in a specific area, the robot must travel
to this area. In this case, the action description can be aug-
mented with the necessary geometric constraints.

Thus, an action description2 includes two kinds of geomet-
ric preconditions called respectively attitude preconditions
and behaviour preconditions. Attitude preconditions are used
to express the attitude, e.g. its orientation and heading, that
the robot must have in order to achieve an action. Behaviour
preconditions define the robot behaviour during the action
achievement.

Definition 1 (Action) An action A is defined as a tuple
〈 head(A), pre(A), att pre(A), behav pre(A), eff(A) 〉

2or planning operator: see [Ghallab et al., 2004] for a formal
description of planning languages.

<precondition> :: (<element>*)
<element> :: <statement> |<rule>
<statement> :: (<concept> <var C>)
<var C> :: variable
<concept> :: agent | object
<property> :: <global property> |<concept property>
<global property> :: user-defined global property
<concept property> :: <var C>.<parameter>
<parameter> :: user-defined robot parameter
<rule> :: (<function> |<elt r> comparator <elt r>)
<elt r> :: <function> |<property> | constant
<function> :: f ident(<arg>1,...,<arg>n)
<f ident> :: user-defined function header
<arg> :: <elt r>

Table 2: Formal description of the attitude and behaviour pre-
conditions syntax.

;; Operator film objective
(Operator (!film_objective ?r ?o)

;; symbolic preconditions
((rover ?r)(objective ?o)(camera ?c)
(has_camera ?r ?c)(is_calibrated ?c))

;; attitude preconditions
((agent ?r)(object ?o)
((distance(r.pos, o.pos)>= 10)
(distance(r.pos, o.pos)<= 20)
(rel_angle(r.pos, o.pos, r.heading) = 90)
(r.speed = r.speed_max))

;; behaviour preconditions
((duration = 10)
(constant(r.heading))
(constant(r.speed)))

;; symbolic effects
((has_film ?r ?o))
)

Figure 4: Example of an action description

where head(A) is the identifier of the action, pre(A) is the set
symbolic preconditions, i.e. high-level conditions allowing to
decide if this action can be applied, att pre(A) defines the at-
titude preconditions, behav pre(A) is the behaviour precon-
ditions, and eff(A) is high level effects that modify the current
world state into a new resulting state. Figure 4 presents an
example of an action description.

3.2 Expressing constraints
The motion planner has to satisfy a set of geometric con-
straints given by the attitude and behaviour preconditions
att pre(A) and behav pre(A) whenever the corresponding
high-level action is selected. In order to allow communica-
tion between the task and motion planners, these constraints
must be expressed in a common standardized fashion. This
permits message exchange between planners. Table 2 pro-
poses a syntax for this encoding based on concepts, global
properties, concept properties and rules.

Concepts identify agents and environment objects that will
be handled by both planners. A set of properties called con-
cept properties is associated with each concept. Global prop-
erties specify properties of a motion subproblem that have to
be respected independently of concepts such as duration of a
motion. Rules aim at defining robot kinematic constraints as
well as constraints between agents and physical objects.

In the example the attitude and behaviour are constrained
by 4 and 3 rules reciprocally. This specifies two continuous
sets in the state space of the robot.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

23

3.3 Interaction between planners
During the planning process, both planners will interact to-
gether. We define two classes of messages: planning mes-
sages and system messages. Planning messages contain plan-
ning information and are the essential elements of the pro-
posed planning architecture: planning requests and advices.
System messages aim at guiding the planning process: sys-
tem requests, acknowledgement and error messages, and ad-
vice queries.

Planning requests are sent by the task planner to the motion
planner and contain the geometric and kinematic constraints
defining a requested motion.
Definition 2 (Planning request) A planning requestR is de-
fined as a tuple 〈 Type(R), Agent(R), Idaction(R), C(R) 〉
where Type(R) is the type of the request. For example, atti-
tude to define an attitude precondition request, or behaviour
for a behaviour precondition request. Agent(R) identifies
the agent concerned by the request in the case of a multi-
agent problem. Idaction(R) is an action identifier allowing to
maintain a consistancy between the task planner and the path
planner processes. C(R) is the set of geometric constraints to
be respected during robot motions.

Advices are sent by the motion planner to the high-level
planner and aim at helping it in its choices. We define three
different type of advice: heuristic, optimization and repair.
Definition 3 (Advice) An advice A is defined as a tuple
〈 Type(A), Content(A), Agent(A), set{Idaction(A)} 〉
Type(A) is the type of the advice: heuristic, optimiza-
tion or repair. Content(A) is the content of the advice.
Agent(A) identifies which agent is concerned by the advice.
set{Idaction(A)} is a set action identifiers concerned by this
advice.

System requests are sent by an interface defined between
planners and aim at initializing and controlling the interaction
between planners.

Acknowledgments and error messages are sent by the mo-
tion planner in response to a planning request. An acknowl-
edgment is sent when a motion has been computed. Error
messages are sent when a requested motion is unfeasible, and
contain the failure cause. For example, for the problem of
section 2, if there is a constraint on path length, the path plan-
ner would return an error message when the shortest path is
longer than the maximal value.

Advice queries are sent by the high-level planner when in-
formation about the environment is needed in order to choose
the next action to be undertaken. However, advices can be
sent even without an advice query from the task planner.

3.4 Global overview of the planning architecture
Figure 5 presents the place of the planning module in the
robotic architecture. At the initialization stage, the predic-
tion module provides necessary information in order to solve
a problem. These informations are a set of symbolic ac-
tion descriptions, i.e. descriptions of actions the robot can
perform, the environment description, and the mission to
achieve. When a plan is found, it is sent to the execution
module. This solution plan contains the actions and motions
computed by both planners.

Figure 5: Description of the planning module and its place in
a robotic architecture

4 Conclusion and perspectives
In this paper, we proposed a preliminary formalization of a
general framework that aims at coupling a high-level mission
planner with a low-level motion planner. This coupling tries
to overcome drawbacks of classical robotic architectures.

Our contribution is based on a enhanced description of ac-
tion that allows to express geometric and kinematics con-
straints, and on a structured interaction between both plan-
ners. The two main communication primitives are planning
requests to transmit geometric constraints and advices to use
the motion planner expertise.

In future work, this architecture will be tested on search-
and-rescue missions for a team of autonomous aerial vehicles.

References
[Alami et al., 1998] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An

architecture for autonomy. International Journal of Robotics Research, 17:31–337,
1998.

[Brumitt and Stenz, 1998] B. L. Brumitt and A. Stenz. GRAMMPS: A generalized
mission planner for multiple mobile robots in unstructured environments. In IEEE
International Conference on Robotics and Automation, pages 1564–1571, 1998.

[Estlin et al., 2001] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt,
and S. Chien. Decision-making in a robotic architecture for autonomy. In 6th Inter-
national Symposium on AI, Robotics and Automation in Space, 2001.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso. Automated planning: The-
ory and Practice. Morgan Kaufmann, 2004.

[Guere and Alami, 2001] E. Guere and R. Alami. Let’s reduce the gap between task
planning and motion planning. In IEEE International Conference on Robotics and
Automation, pages 15–20, 2001.

[Kambhampati et al., 1993] S. Kambhampati, M.R. Cutkosky, J.M. Tenenbaum, and
S.H. Lee. Integrating general purpose planners and specialized reasoners: case study
of a hybrid planning architecture. In IEEE Transactions on Systems, Man and Cy-
bernetics, volume 23, pages 1503–1518, 1993.

[Lamare and Ghallab, 1998] B. Lamare and M. Ghallab. Integrating a temporal plan-
ner with a path planner for a mobile robot. In AIPS Workshop Integrating planning,
scheduling and execution in dynamic and uncertain environments, pages 144–151,
1998.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

24

Planning and Acting with an Integrated Sense of Space
N. Hawes1 and H. Zender2 and K. Sjöö3 and M. Brenner4 and G.J.M. Kruijff2 and P. Jensfelt3

1Intelligent Robotics Lab, School of Computer Science, University of Birmingham, UK
2Language Technology Lab, German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

3Centre for Autonomous Systems, Royal Institute of Technology (KTH), Stockholm, Sweden
4Institute for Computer Science, Albert-Ludwigs-Universität, Freiburg, Germany

1nah@cs.bham.ac.uk, 2{zender, gj}@dfki.de, 3{krsj,patric}@csc.kth.se, 4brenner@informatik.uni-freiburg.de

Abstract
The paper describes PECAS, an architecture for
intelligent systems, and its application in the Ex-
plorer, an interactive mobile robot. PECAS is a
new architectural combination of information fu-
sion and continual planning. PECAS plans, inte-
grates and monitors the asynchronous flow of infor-
mation between multiple concurrent systems. In-
formation fusion provides a suitable intermediary
to robustly couple the various reactive and delib-
erative forms of processing used concurrently in
the Explorer. The Explorer instantiates PECAS
around a hybrid spatial model combining SLAM,
visual search, and conceptual inference. This paper
describes the elements of this model, and demon-
strates on an implemented scenario how PECAS
provides means for flexible control.

1 Introduction
Recently there has been an enormous increase in R&D for
domestic robot assistants. Moving beyond the Roomba, more
complex robot “gophers” are envisioned, to assist in per-
forming more demanding tasks in human environments. To
achieve this vision, the study of integrated robotic systems
that fulfill many different requirements is necessary.

Research on individual aspects of such systems has yielded
impressive robots, e.g. the museum guides Rhino [Burgard et
al., 2000] and Robox [Siegwart and et al., 2003], or the in-
store assistant ShopBot [Gross et al., 2008]. Other robots,
like RoboVie [Ishiguro et al., 2001], Mel [Sidner et al.,
2004], BIRON [Peltason et al., 2009], or our CoSy systems
[Hawes et al., 2007; Kruijff et al., 2007] provide capabilities
for the robot to interact with a human using spoken dialogue.
As impressive as they are, all these systems lack the wide
range of capabilities needed by a versatile robotic assistant.
Producing such a system by integrating the results of spe-
cialized subfields such as control, perception, reasoning, and
dialogue remains a major challenge to AI and robotics.

If we wish to build a mobile robotic system that is able
to act in a real environment and interact with human users
we must overcome several challenges. From a system per-
spective, one of the major challenges lies in producing a sin-
gle intelligent system from a combination of heterogeneous

specialized modules, e.g. vision, natural language process-
ing, hardware control etc. Ideally this must be done in a
general-purpose, extensible and flexible way, with the ab-
solute minimum of hardwired behaviors. This both allows
solutions to be reused in different systems (allowing an un-
derstanding of the design trade-offs to be obtained), and for
the same system to be altered over time as requirements
change. Additionally, taking account of the “human in the
loop” poses the challenge of relating robot-centric represen-
tations to human-centric conceptualizations, such as the un-
derstanding of large-scale space [Kuipers, 1977].

In this paper we present PECAS (see Section 2), our novel
approach to integrating multiple competences into a single
robotic system. PECAS allows us to address many of the pre-
viously described problems in an architectural way, providing
an approach that is ultimately resuable in other robots and
domains. For a general-purpose architecture to be deployed
it must be instantiated with task-specific content. Section 3
presents the Explorer system, our instantiation of PECAS in
an interactive mobile robot. Following this we use the Ex-
plorer instantiation to present examples of PECAS as a con-
trol system (in a general sense). Section 4 presents a complete
system run from our implementation, demonstrating how the
flow of information and control passes between low and high
levels in our system. Section 5 discusses control in PECAS in
general, and the strengths and weaknesses of our approach.

2 The PECAS Architecture
Our recent work on intelligent robotics has led to the de-
velopment of the PlayMate/Explorer CoSy Architecture Sub-
Schema (PECAS). PECAS is an information-processing ar-
chitecture suitable for situated intelligent behavior [Hawes
et al., 2009]. The architecture is designed to meet the re-
quirements of scenarios featuring situated dialogue coupled
with table-top manipulation (the PlayMate focus [Hawes et
al., 2007]) or mobility in large-scale space (the Explorer fo-
cus [Zender et al., 2008]). It is based on the CoSy Architec-
ture Schema (CAS), which structures systems into subarchi-
tectures (SAs) which cluster processing components around
shared working memories [Hawes et al., 2007]. In PECAS,
SAs group components by function (e.g., vision, communi-
cation, or navigation). All these SAs are active in parallel,
typically combining reactive and deliberative forms of pro-
cessing, and all operating on SA-specific representations (as

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

25

is necessary for robust and efficient task-specific processing).
These disparate representations are unified, or bound, by a
subarchitecture for binding (binding SA), which performs ab-
straction and cross-modal information fusion on the informa-
tion from the other SAs [Jacobsson et al., 2008]. PECAS
makes it possible to use the multiple capabilities provided
by a system’s SAs to perform many different user-specified
tasks. In order to give the robots a generic and extensible way
to deal with such tasks, we treat the computation and coordi-
nation of overall (intentional) system behavior as a planning
problem. The use of planning gives the robot a high degree of
autonomy: complex goal-driven behaviors need not be hard-
coded, but can be flexibly planned and executed by the robot
at run-time. The robot can autonomously adapt its plans to
changing situations using continual planning and is therefore
well suited to dynamic environments. Relying on automated
planning means that tasks for the robot need to be posed as
goals for a planner, and behavior to achieve these goals must
be encoded as actions that the planner can process. The fol-
lowing sections expand upon these ideas.

2.1 Cross-Modal Binding
Cross-modal binding is an essential process in information-
processing architectures which allow multiple task-
specialized (i.e., modal) representations to exist in parallel.
Although many behaviors can be supported within individual
modalities, two cases require representations to be shared
across the system via binding. First, the system requires
a single, unified view of its knowledge in order to plan a
behavior that involves more than one modality (e.g., fol-
lowing a command to do something relative to the object
or area). Second, binding is required when a subsystem
needs information from another one to help it solve a
problem (e.g., using visual scene information to guide speech
recognition [Lison and Kruijff, 2008]).

Our approach to binding underlies much of the design and
implementation of our systems, and so we will reiterate it here
(for more details see [Jacobsson et al., 2008]). Each PECAS
SA that wishes to contribute information to the shared knowl-
edge of the system must implement a binding monitor. This
is a specialized processing component which is able to trans-
late from an arbitrary modal representation (e.g., one used for
spatial modeling or language processing) into a fixed amodal
(i.e., behavior neutral) representation. Across a PECAS sys-
tem the binding monitors provide a parallel abstraction pro-
cess mapping from multiple, different representations to a
single, predicate logic-like representation. Binding monitors
deliver their abstracted representations into the binding SA as
binding proxies and features. Features describe the actual ab-
stract content (e.g., color, category, or location) in our amodal
language, whilst proxies group multiple features into a single
description for a piece of content (such as an object, room, or
person), or for relationships between two or more pieces of
content. The binding SA collects proxies and then attempts
to fuse them into binding unions, structures which group mul-
tiples proxies into a single, cross-system representation of the
same thing. Groupings are determined by feature matching.
Figure 1 illustrates this: the SA for navigation (nav SA) and
the SA for conceptual mapping and reasoning (coma SA),

Concept: {"robot"}

 SubarchID: nav.sa

 Concept: {"robot"}

AreaID: {#1}

 Concept: {"library"}

 SubarchID: coma.sa

 AreaID: {#1}

 Concept: {"library"}

 SubarchID: nav.sa

 AreaID: {#1}

 RelationLabel: {"position"}

 TemporalFrame: {PERCEIVED}
from to

 SubarchID: nav.sa

 RelationLabel: {"position"}

 TemporalFrame: {PERCEIVED}

Figure 1: Binding localization and conceptual information:
“the robot is in the library.” Proxies have dashed borders,
unions solid borders. Relation proxies, -unions are colored.

provide their information to the binding SA. Throughout this
process links are maintained between all levels of this hierar-
chy: from modal content, to features and proxies, and then on
to unions. These links act like pointers in a programming lan-
guage, facilitating access to information content regardless of
location. Binding thus supports the two identified cases for
cross-modal binding: the collection of unions provide a sin-
gle unified view of system knowledge, and cross-subsystem
information exchange is facilitated by linking similarly refer-
ring proxies into single union.

2.2 Planning for Action and Processing
For PECAS we assume that we can treat the computation and
coordination of overall system behavior as a planning prob-
lem. This places the following requirements on PECAS: it
must be able to generate a state description to plan with;
system-global tasks for the robot need to be posed as goals
for a planner; and behavior to achieve these goals must be
encoded as actions which can be processed by the planner.
In our implementation we use the MAPSIM continual plan-
ner and its Multi-Agent Planning Language (MAPL) [Bren-
ner and Nebel, 2009]. In MAPL, we can model beliefs and
mutual beliefs of agents as well as operators affecting these,
i.e., perceptual and communicative actions. The continual
planner actively switches between planning, execution, and
monitoring in order to gather missing goal-relevant informa-
tion as early as possible.

To provide a planning state, the planning SA automatically
translates from the unions in the binding SA into MAPL. The
planner thus automatically receives a unified view of the sys-
tem’s current knowledge. As we maintain links from unions
back to modal content, our planning state, and therefore our
plans, remain grounded in representations close to sensors
and effectors. In PECAS, planning goals arise as modal inten-
tional content which is then abstracted via binding monitors
and placed in the planning SA’s working memory. From here
we use the same translation method as is used on the planning
state to produce MAPL goals for the planner.

While the traditional use of planning is achieving goals in
the world using physical actions, such direct interpretations
of behavior are the exception rather than the rule in cog-
nitive robotics (cf. [Shanahan, 2002]). Here, where infor-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

26

mation is incomplete, uncertain, and distributed throughout
subsystems, much of the actions to be performed by the sys-
tem are to do with processing or moving information. Whilst
some information processing may be performed continually
(e.g., SLAM), much of it is too costly to be performed rou-
tinely and should instead be performed only when relevant to
the task at hand, i.e., it should be planned based on context.

Underlying our approach to information-processing is the
functionally decomposed, concurrently active, structure of
PECAS. As each SA is effectively a self-contained process-
ing unit, our design leads naturally to an integration strategy:
each SA is treated as a separate agent in a multi-agent plan-
ning problem. A crucial feature of this strategy is that each
SA’s knowledge is separate within the planning state, and can
only be reasoned about using epistemic operators (i.e., oper-
ators concerned with knowledge). Likewise, goals are often
epistemic in nature, e.g., when a human or a SA wants to
query the navigation SA for the location of an object.

To realize internal and external information exchange each
SA can use two epistemic actions, tell-value and ask-value,
coupled with two facts about SAs, produce and consume. The
actions provide and request information respectively. The
facts describe which SAs can produce and consume which
predicates (i.e., where certain types of information can come
from and should go). For example, if a human teacher
tells our robot that “this is the kitchen,” this gives rise to
the motivation that all SAs which consume room knowledge
(e.g., coma SA described in the next section) should know
the type of the room in question. This may lead to a plan in
which the SA for situated dialogue (comsys SA) uses a tell-
value action to give the coma SA this information.

Using this design, planning of information-processing be-
comes a matter of planning for epistemic goals in a multi-
agent system. This gives the robot more autonomy in decid-
ing on the task-specific information flow through its subsys-
tems. But there is another assumption underlying this design:
whilst the binding SA is used to share information through-
out the architecture, not all information in the system can or
should be shared this way. Some of it is unavailable because
it is modality specific, and even cross-modal knowledge is of-
ten irrelevant to the task at hand. If all information was shared
this would overwhelm the system with (currently) irrelevant
information (e.g., lists of all the people, rooms, objects, object
categories etc. that parts of the system know about). Thus, in
order to restrict the knowledge the planner gives “attention”
to without losing important information, it needs to be able to
extend its planning state on-the-fly, i.e., during the continual
planning process. In PECAS state extension can be done us-
ing ask-value and tell-value actions, and results in a process
we call task-driven state generation.

3 The Explorer Instantiation
The binding and planning SAs described above are system
and scenario independent. We now discuss the Explorer-
specific SAs to describe concrete functionality and how this
relates to system control. All SAs have been implemented
in CAST (an open-source toolkit implementing the CAS
schema) and tested on an ActivMedia PeopleBot. Figure 2

Figure 2: The Explorer Architecture
shows all SAs used in the Explorer PECAS instantiation.
Most components used in the different SAs have been dis-
cussed in detail in earlier work (references provided below).

For a mobile robotic system that is supposed to act and
interact in large-scale space, an appropriate spatial model is
key. The Explorer maintains a multi-layered conceptual spa-
tial map of its environment [Zender et al., 2008]. It serves
as a long-term spatial memory of large-scale space. Its in-
dividual layers represent large-scale space at different levels
of abstraction, including low-level metric maps for robot mo-
tion control, a navigation graph and a topological abstraction
used for high-level path planning, and a conceptual represen-
tation suitable for symbolic reasoning and situated dialogue
with a human. In the Explorer, different SAs represent the
individual map layers. For the details on human-augmented
map acquisition see [Kruijff et al., 2007].
nav SA The SA for navigation and spatial mapping hosts
the three lowest levels of the spatial model (metric map, nav-
igation map, and topological layer). For low-level, metric
mapping and localization the nav SA contains a module for
laser-based SLAM. The nodes and edges of the navigation
map represent the connectivity of visited places, anchored in
the metric map through x-y-coordinates. Topological areas,
corresponding roughly to rooms in human terms, are sets of
navigation nodes. This level of abstraction in turn feeds into
the conceptual map layer that is part of the coma SA.

The nav SA contains a module for laser-based people de-
tection and tracking [Zender et al., 2007]. The nav SA bind-
ing monitor maintains the robot’s current spatial position and
all detected people, as proxies and relations on the binding
SA. The smallest spatial units thus represented are areas. This
provides the planner with a sufficiently stable and continuous
description of the robot’s state. The planning SA can pose
move commands to the nav SA. The target location is de-
fined based on the current task which might be to follow a
person, move to a specific point in space, etc. Move com-
mands are executed by a navigation control module, which

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

27

performs path planning on the level of the navigation graph,
but automatically handles low-level obstacle avoidance and
local motion control.
obj SA The SA for vision-based object search contains the
components for finding objects using vision. It consists of
a module for view planning and one for visual search. The
view planning component creates a plan for which navigation
nodes to visit, in what order and in what directions to look.
Details of the process can be found in [Gálvez López et al.,
2008]. The visual search consists of SIFT feature matching
directly on acquired images. Objects that are found are pub-
lished on the obj SA working memory. The nav SA detects
this and in turn extends the spatial model with the new ob-
jects. This then propagates the information to the coma SA
and, if and when necessary, to the binding SA.
coma SA The SA for conceptual mapping and reasoning
maintains an abstract symbolic representation of space suit-
able for situated action and interaction. It represents spatial
areas (nav SA), objects in the environment (obj SA), and ab-
stract properties of persons (e.g., ownership relations) in a
combined A-Box and T-Box reasoning framework based on
an OWL-DL reasoner, which can infer more specific concepts
for the area instances [Zender et al., 2008]. The coma SA
makes its information available to the binding SA on demand,
i.e., whenever planning SA sends an ask-val command to the
coma SA, it will add its knowledge about spatial entities, es-
pecially their most specific concepts. In our system the ex-
plicit definitions of area concepts through occurrences of cer-
tain objects are also used to raise expectations about typical
occurrences of certain objects. If the planning SA needs to
know the location of an object that has not been encountered
before, it can query the coma SA, which will then provide a
typical location of the object in question. This is done via
special T-Box queries involving the OWL-DL definitions of
concepts. An example of this will be discussed in Section 4.
comsys SA The subarchitecture for situated dialogue pro-
cessing has a number of components concerned with under-
standing and generation of natural language utterances [Krui-
jff et al., 2009]. Speech recognition converts audio to possi-
ble text strings, which are subsequently parsed. Parsing pro-
duces a packed representation of logical forms (LFs) that cor-
respond to possible semantic interpretations of an utterance.
Finally, the semantics are interpreted against a model of the
dialogue context. Content is connected to discourse referents,
being objects and events talked about over the course of an in-
teraction. In the dialogue context model, both the content of
the utterance and its intent are modeled. All of this infor-
mation is communicated to the planning SA and the binding
SA through proxies representing the indexical and intentional
content of the utterances. In rough terms the indexical content
(information about entities in the world) is used by the bind-
ing SA to link with information from other modalities. Mean-
while the intentional content (information about the purpose
of the utterance) is used by the planning SA to raise goals for
activity elsewhere in the system [Kruijff et al., 2009].

4 Example: Finding a book
This section presents a scenario in which a human asks the
Explorer to perform a task. It shows how PECAS controls

(a) Screenshot of the visualization tool

!"#$%&'()*+&%,-"#+.

/"$0'1"#()*234356)784996)8:;,<=>.

?%,-"#@A()*B<.

CDE0,$F@A()#0G4-0

!"#$%&'()*+&%,-"#+.

/"$0'1"#()*234356)784996)8:;,<=>.

?%,-"#@A()*B<.

!"#$%&'()*+,"E"'+.

CDE0,$F@A()#0G4-0

!"#$%&'()*+,"E"'+.

H%I0'1"#/0E%I()*+$I"-%+.

J%=&",0IK,0=%()*?LH!L@MLA.

'" N,"=

CDE0,$F@A()#0G4-0

H%I0'1"#/0E%I()*+$I"-%+.

J%=&",0IK,0=%()*?LH!L@MLA.

O,%0@A()*B8.

CDE0,$F@A()#0G4-0

O,%0@A()*B8.

H%I0'1"#/0E%I()*+&"-1'1"#+.

J%=&",0IK,0=%()*?LH!L@MLA.
N,"= '"

CDE0,$F@A()#0G4-0

H%I0'1"#/0E%I()*+&"-1'1"#+.

J%=&",0IK,0=%()*?LH!L@MLA.

H%I0'1"#/0E%I()*+&"-1'1"#+.

J%=&",0IK,0=%()*?LH!L@MLA.
N,"=

'"

CDE0,$F@A()#0G4-0

H%I0'1"#/0E%I()*+&"-1'1"#+.

J%=&",0IK,0=%()*?LH!L@MLA.

(b) Contents of binding working memory

Figure 3: Initial situation: the user approaches the robot

system behavior and information-processing. The example is
taken directly from our implemented system, showing system
visualizations (with minor post-processing).

The system starts in the spatial context and binding state
visualized in Figure 3: the robot and person are occupying
the same area, and the person is close to the robot. The robot
proxy is provided by the nav SA which it abstracts from its
representation of the robot pose. The person proxy is pro-
vided by the nav SA because a person is being tracked. In
addition to these, the nav SA makes available a proxy for the
area in which one of these proxies occurs, linking them with a
position relation proxy. Finally, the close relation proxy con-
nects the robot proxy to the proxy of the person because the
person is geometrically close to the robot. Note that no ob-
jects are present, nor are other areas except the current area.

Next, the human approaches the robot and says “find me
the Borland book”. The comsys SA interprets this utterance,
presenting the elements of its interpretation to the rest of the
system as proxies. Figure 4a shows the results. The Explorer
itself (the recipient of the order) is represented by a proxy
with Concept addressee, which binds to the robot proxy
already present. The word “me” refers to the speaker, and
generates a “person” proxy identified by the Name feature
I. The expression referring to the book is given by a “Bor-
land book” proxy, not yet bound to any other proxies.

The comsys SA can determine the intention of this utter-
ance, and separates the intentional elements of the interpreta-
tion from the aforementioned descriptive proxies. This inten-
tional content is written to planning SA as a proxy structure
with links back to the binder. The structure of this motive
can be seen in Figure 4b. Planning SA, detecting a new mo-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

28

Concept: {"person"}

Location: {(2.25, -0.33, 0)[r1m]}

PersonID: {#1}

Name: {"I"}

SubarchID: nav.sa

Concept: {"person"}

Location: {(2.25, -0.33, 0)[r1m]}

PersonID: {#1}

SubarchID: comsys.sa

Concept: {"person"}

Name: {"I"}

Concept: {"robot","addressee"}

SubarchID: comsys.sa

Concept: {"addressee"}

SubarchID: nav.sa

Concept: {"robot"}

Concept: {"borland_book"}

SubarchID: comsys.sa

Concept: {"borland_book"}

RelationLabel: {"close"}

TemporalFrame: {PERCEIVED}

to from

SubarchID: nav.sa

RelationLabel: {"close"}

TemporalFrame: {PERCEIVED}

AreaID: {#0}

SubarchID: nav.sa

AreaID: {#0}

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}
from

to

SubarchID: nav.sa

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}
from

to

SubarchID: nav.sa

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}

(a) State of binding SA

RelationLabel: {"Actor"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}

Concept: {"addressee"}

SubarchID: {comsys.sa}

to

Concept: {"find"}

SubarchID: {comsys.sa}

from

RelationLabel: {"Recipient"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}

from

Concept: {"person"}

Name: {"I"}

SubarchID: {comsys.sa}

to

RelationLabel: {"Patient"}

SubarchID: {comsys.sa}

TemporalFrame: {ASSERTED}from

Concept: {"Borland_book"}

SubarchID: {comsys.sa}

to

(b) Representation of intentional content (as a motive)

Objects:

(area id 0 - area-id)

(gensym0 - robot)

(gensym1 - area-name)

(gensym4 - person)

(gensym6 - movable)

Facts:

(area-id gensym1 : area id 0)

(area-name area id 0 : gensym1)

(perceived-pos gensym0 : area id 0)

(perceived-pos gensym4 : area id 0)

(close gensym4 gensym0 : true)

(c) Planning state after processing the intentional content

Figure 4: State after the user has uttered the command “Find me the Borland Book.”

tive, begins the process of creating a plan to fulfill it. First,
it converts the information on the binder (Figure 4a) to the
MAPL representation in Figure 4c. In this process unions
become objects and predicates in the planning state. E.g.,
as the person union is related by a position relation union
to an area union, this will be expressed to the planner as
(perceived-pos gensym4 : area 0), where gensym4
is an auto-generated planning symbol referring to the person,
and area 0 refers to the area. The planner similarly converts
the motive from Figure 4b into a MAPL goal (K gensym4
(perceived-pos gensym6)). This can be read as the Ex-
plorer having the goal of the the person knowing the position
of the book. We use this interpretation of the command “Find
me...”, as the robot does not have the ability to grasp objects.

Given this state and goal, the planner creates a plan:
L1: (negotiate_plan gensym0 coma_sa)
L2: (tell_val_asserted-pos

coma_sa gensym0 gensym6)
L3: (find_a gensym0 gensym6 gensym0)
L4: (tell_val_perceived-pos

gensym0 gensym4 gensym6)

This plan states that the Explorer must find the location of the
book (L3), then report this location to the person (L4). Be-
fore it does this it must negotiate with the coma SA (as each
subarchitecture is treated as a separate agent) to provide a lo-
cation where it might be able to find the book (L1,L2). The
reasoning behind this plan is that Explorer must provide the
person with a perceived location for the book (as is specified
in the goal), and, having not seen it recently, the only way to
obtain a perceived location is via its object search functional-
ity. To perform an object search the system must have both
an object to search for (the book in this case) and an area
to search. Typical positions of objects (as opposed to their
perceived positions) are stored in the ontology in coma SA.
Rather than make all of this knowledge available via binding
by default (a choice which would add many extra and redun-
dant facts to the planning state), typical positions are offered
by coma SA using a produce fact (see Section 2.2). This al-
lows the planner to query coma SA for typical positions when
it requires them. One advantage of this on-demand state gen-
eration is that the comsys SA could also be used to provide
the same knowledge (and would be if the book was not found
initially). In the above plan, the planner makes use of this by

AreaID: {#1}

Concept: {"library"}

SubarchID: coma.sa

AreaID: {#1}

Concept: {"library"}

SubarchID: coma.sa

Concept: {"library"}

SubarchID: nav.sa

AreaID: {#1}

Concept: {"borland_book"}

SubarchID: comsys.sa

Concept: {"borland_book"}

SubarchID: coma.sa

Concept: {"borland_book"}

RelationLabel: {"position"}

TemporalFrame: {TYPICAL}
to

from

SubarchID: coma.sa

RelationLabel: {"position"}

TemporalFrame: {TYPICAL}

root

Figure 5: Hypothetical position of the Borland book.
getting the coma SA to tell-val the typical position of the
Borland book to the binding SA. This yields the information
that, as it is a book, it would typically be found in a library.
Along with this, the coma SA also volunteers the specific in-
formation it has on libraries: an area exists in its map that is
a library. This is illustrated in Figure 5.

Given this hypothesis for the book’s location, MAPSIM
uses a replanning step to expand the initial plan to include
steps to move the robot to the library, search there for the
book, then move back and report to the user. The updated
plan and planning state are now as follows:
Objects:
(area_id_0 - area-id) (area_id_1 - area-id)
(gensym0 - robot) (gensym1 - area-name)
(gensym4 - person) (gensym6 - borland_book)
(gensym6 - movable) (gensym7 - area-name)

Facts:
(area-id gensym1 : area_id_0)
(area-id gensym6 : area_id_1)
(area-name area_id_0 : gensym1)
(area-name area_id_1 : gensym7)
(asserted-pos gensym6 : gensym7)
(perceived-pos gensym0 : area_id_0)
(remembered-pos gensym4 : gensym1)

Plan:
L1: (move gensym0 area_id_1 area_id_0)
L2: (object-search-in-room

gensym0 gensym6 area_id_1)
L3: (approach-person

gensym0 gensym4 area_id_0)
L4: (tell_val_perceived-pos gensym0

gensym4 gensym6)

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

29

AreaID: {#1}

Concept: {"library"}

SubarchID: coma.sa

AreaID: {#1}

Concept: {"library"}

SubarchID: coma.sa

Concept: {"library"}

SubarchID: nav.sa

AreaID: {#1}

Concept: {"borland_book"}

SubarchID: comsys.sa

Concept: {"borland_book"}

SubarchID: coma.sa

Concept: {"borland_book"}

SubarchID: nav.sa

Concept: {"borland_book"}

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}

to from

SubarchID: nav.sa

RelationLabel: {"position"}

TemporalFrame: {PERCEIVED}

RelationLabel: {"position"}

TemporalFrame: {TYPICAL}
to

from

SubarchID: coma.sa

RelationLabel: {"position"}

TemporalFrame: {TYPICAL}

Figure 6: Perceived location of the book

In the above, gensym7 is the binding union of the library.
Using the AreaID feature from the this union, the planner is-
sues a command to the nav SA which moves the robot to the
library (fulfilling step L1). As with all other steps in the plan
(including the information-processing ones), the results of
this action are checked by MAPSIM to determine whether it
has completed successfully or whether replanning is required.
This check is performed by inspecting the planning state and
comparing it to the expected state. This means that all ac-
tions must have effects that are visible on the binding SA (for
subsequent translation). Once the check has passed for L1
(confirming the robot has arrived in the library), the planner
issues an object search command to the object SA. The Ex-
plorer searches the room as described previously. Once the
object is found, the nav SA adds it to the navigation graph.
Since it is part of the current spatial context, it is also ex-
ported to the binder in the form of an object proxy, which is
connected to the room’s proxy by a new position proxy. This
position proxy has a PERCEIVED temporal frame.

The new proxies generated by object search bind to the ex-
isting complex (pictured in Figure 5), resulting in the struc-
ture in Figure 6. This binding provides the original comsys
SA book proxy with a perceived position (in addition to its
typical one). With this knowledge in the planning state (i.e.,
the effect of L2 is verified, which satisfies one precondition
of L4), the planner is able to trigger the remaining steps in
the plan: moving to the user and reporting the perceived posi-
tion. A move command is send to the nav SA referencing the
Location feature from the person proxy. Once close to this
location, a tell-val is sent to the comsys SA to communi-
cate the book’s location to the person. A content generation
component in the comsys SA uses the contents of the binder
(see Figure 6) to generate the utterance “the Borland book
is in the library”, thus completing the plan and satisfying the
original goal (that the person knows the position of the book).

5 Discussion
The preceding sections illustrate how our architectural ideas
come together to create a control system for intelligent be-
havior. Although the surface form of the scenario does not
present much in the way of novel interactions, the PECAS
architecture and the multi-level spatial representation provide
a novel system-level approach with a number of important
features. Including the binding SA in the architecture allows

multiple modalities to collaborate on problems that a single
modality in isolation would not be able to solve. E.g., in the
Explorer the comsys SA initially provides a description of an
object based on natural language input, conceptual mapping
then extends this description, and vision finally completes it.
Whilst other systems may include elements of cross-modal
fusion, we have taken the additional, novel step of using the
results of fusion to provide input to a continual planner. This
allows the behavior of multiple modalities to be marshalled
in pursuit of system goals in a general, extensible manner.
Using continual planning PECAS achieves this in a way that
is responsive to external change and certain types of failure.
In PECAS all this is true both of actions that have physical
effects, and of internal, information-processing actions.

Both the theory and implementation of the Explorer sys-
tem and PECAS are works in progress, so we can identify
many areas that need further study, or currently limit our ap-
proach. E.g., while the the use of MAPSIM provides many of
the strengths of our work, planning occurs at quite a high level
of abstraction. This consequently also applies to interactions
between subarchitectures, and between the Explorer and the
world. Whilst this has some advantages (e.g., subsystems are
free to interpret commands in modality specific ways, some-
thing discussed in more detail below), it may be a hindrance
to more closely coupled interactions between behaviors, such
as positioning the robot to see an object that it is trying to pick
up. Also, actions used in the PECAS architecture must have
effects that are visible at the level of binding proxies, which
may not hold for actions that have effects in a single SA. Our
system also relies on many translations between formalisms.
Whilst our structured support for this (via binding) is a clear
strength, in practice the translations can become somewhat
arbitrary and hard to maintain.

5.1 Approaches to Control
The HYCAS workshop aims to investigate issues of hybrid
control in autonomous systems, so what lessons can we learn
from the work presented here? In all PECAS systems we
have a number of control patterns working in parallel. At the
lowest level we can reasonably discuss in terms of architec-
ture, components typically run in one of two modes. Either
they perform continuous processing which provides a stream
of data to working memory, or they wait for a particular event
which triggers some processing (which may or may not result
in a change to working memory). In this case events may ei-
ther be external to the system (e.g., a sensor, such as a micro-
phone, being triggered), or internal (where an event describes
a change to working memory contents). Within a SA these
types of processing behaviors happen concurrently (with SAs
also working in parallel to each other). Control of SA-level
processing is typically constrained at design-time, when com-
ponents are set to listen to particular types of events. At
run-time these events, and mediated access to the informa-
tion they describe, provide implicit synchronization during
processing. Thus PECAS does not provide explicit control
strategies within SAs (although a few common control strate-
gies tend to be reused).

As described in the preceding sections, the path to high-
level control in PECAS comes via SAs exposing modal con-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

30

tent to the rest of the system via the binding system. The pro-
cess by which this occurs plays a major role in system con-
trol. Binding monitors provide abstracted representations of
SA-local content. They typically do this based on three dif-
ferent triggers: SA-internal events, SA-external events, and
on-demand. The first of these is the most basic case: the
generation of a new local representation triggers the SA’s
binding monitor to generate a proxy. This happens in the
Explorer for discourse referents in the comsys SA. The sec-
ond case, SA-external events, typically provides a way for
the existing binding state to influence the generation of fur-
ther proxies (one of the limited, distributed, forms of atten-
tion in PECAS): the monitor listens for both SA-internal and
-external events, then, when some particular events co-occur,
it generates a proxy from some local content. This happens in
the Explorer when the conceptual mapping SA provides prox-
ies in response to proxies generated by other SAs (e.g., when
the comsys SA generates a proxy for an object, the coma SA
provides additional proxies to bind with it). The final case,
on-demand monitor operation, occurs when a binding moni-
tor is explicitly asked (rather than implicitly triggered) to pro-
vide information about a particular entity already represented
in the binding SA. This approach is used by the system to
deliberatively add information to the binding system. This is
typically done during the planning process (as an element of
on-demand state generation).

The first two of these binding monitor triggers represent
additional design-time control decisions within PECAS sys-
tems. The designer explicitly chooses which SA and system
events should cause information to be shared via binding (and
thus added to the planning state for system control). The un-
derlying assumption is that the system will need high-level
access to this information regardless of context, and there-
fore this hard-wired approach is acceptable. The latter case,
on-demand triggering, provides a system with explicit con-
trol over the information shared between all SAs and used for
planning. We expect this approach, whether driven by plan-
ning or other mechanisms, to become the dominant approach
in future PECAS systems. The alternative (implicit control
over the contents of the binding SA) would place the system
entirely at the mercy of reactive control, potentially flooding
the binding SA with irrelevant or redundant information.

Binding monitors typically provide two types of abstrac-
tion: level-of-detail abstraction and temporal abstraction. The
former has been taken for the implicit meaning of “abstrac-
tion” in the preceding sections: translation of a complex
modal representation into a less complex amodal representa-
tion. Temporal abstraction is often implicit in level-of-detail
abstraction, but it is important to make its presence explicit as
it influences our control approach. Changes within SAs typ-
ically occur at a rate linked to the rate of change of sensors
used for that SA’s modality or the processing schemes used
to interpret the results of those sensors. E.g., in the nav SA
the pose of the robot is updated by SLAM at 5Hz, in the com-
sys SA elements of the discourse references are incrementally
updated during an utterance interpretation (and across multi-
ple utterances if they are reused), and in the obj SA object
positions are updated as close to framerate as the system can
manage. If the planner, or any other deliberative system, had

to take control decisions using information at this level of de-
scription from multiple SAs, its decisions would only be valid
for that length of time all of these representations remained
unchanged (a number limited by the most volatile item of
information). This would make system-wide control rather
difficult. Binding monitors ameliorate this problem by only
propagating relevant changes from the SA level to the bind-
ing SA. What constitutes a relevant change is both SA- and
task-specific, but often relevance is coupled to the potential
of the change to significantly alter the global state of the sys-
tem. Temporal abstraction occurs because significant changes
typically do not occur at the same rate as all changes; they
often happen much less frequently. This highlights the close
coupling between temporal abstraction and level-of-detail ab-
straction, as the latter defines our global state. This fact is
often relied upon in systems which operate on multiple levels
of abstraction. In this sense the role binding plays in PECAS
can be meaningfully compared with the definition of an in-
terface layer in the work of Wood (e.g., [Wood, 1994]). In-
terface layers are where a designer identifies critical points
in the representations used by a system. These are points at
which the representations become suitable for particular types
of reasoning tasks. The identification of these layers is crucial
for system control; they provide a way to match up represen-
tations with decision making approaches, e.g., detailed, dy-
namic representations for reactive control, and more abstract,
stable representations for deliberative control. So, to reiterate
an important point, unions and proxies (and to some extent
the actions used by the planner) represent a stable point in
the space of representation used by PECAS systems. Without
them we would not be able to use planning (which requires
such stability) to control system behavior.

From a control perspective there are two interesting aspects
to our use of planning. First, as mentioned previously, we use
continual planning: we integrate execution monitoring and
replanning into our high-level control system. This provides a
form of closed-loop high-level control for our system, where
the effects of actions are monitored relative to expectations
established by their definitions, and replanning is triggered
if these expectations are violated. Second, the planner only
has an opaque interface to the actions themselves. Rather
than being concerned with how each action is implemented,
PECAS only requires that the implementing SA abides by the
contract provided by the action definition; otherwise planning
and monitoring will fail. This is in contrast to other systems
(e.g., 3T [Bonasso et al., 1997]) where high-level control is
used to schedule behaviors all the way down to the lowest-
level (e.g., skills) too. By adopting a less exacting approach
to action execution we allow each SA to interpret the action
in a contextually appropriate way. SAs may choose to use
one or many components to execute an action and may go
through as many intermediate steps as required. This allows
a single high-level control action to become a multiple step
lower-level action, e.g., when an action results in a dialogue,
or a visual search behavior. Of course, this means the planner
is unable to directly influence the creation or scheduling of
these lower level tasks. This is not a problem in our current
domains where actions do not compete for resources across
SAs, but in future this could become a problem. Possible

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

31

solutions include making the actions available to the planner
less coarse but still not providing a one-to-one mapping to
SA-internal actions (i.e., giving it tighter control over SA be-
havior), or annotating actions with resource constraints.

In summary, the overall behavior of a PECAS system,
including the Explorer instantiation described in this paper,
emerges from the interaction of reactive and deliberative con-
trol systems at multiple levels of abstraction. Multiple con-
current components within SAs are controlled implicitly by
design-time event-subscription rules, and use CAST’s event
mechanisms and working memories to synchronism their pro-
cessing at run-time. Across the system a collection of bind-
ing monitors provide an interface at which representations
become abstract and stable. This allows a single delibera-
tive control process to interact with the multiple concurrent
SAs. It is this interface level which allows a PECAS instanti-
ation to solve some problems with deliberative approaches
(e.g., cross-SA coordination) and others with reactive ap-
proaches (e.g., within-SA coordination and sensor and effec-
tor control) whilst remaining contextually appropriate and re-
sponsive to its environment (i.e., no single control strategy
ever exclusively takes charge of the entire system). How-
ever, this approach currently relies on an external designer
fixing the representations either side of the interface level.
Whilst this is not necessarily a problem in the short-term, in
the future we would like to investigate what properties define
a good interface level so that new system designers will not
have to make uninformed design decisions.

6 Conclusion
We described PECAS, an architecture for intelligent systems.
PECAS is a new architectural combination of information
fusion and continual planning. Its purpose is to plan, inte-
grate and monitor the asynchronous flow of information be-
tween multiple concurrent systems to achieve a task-specific
system-wide goal. We used the Explorer instantiation to show
how this works out in practice. The Explorer instantiates
PECAS around a hybrid spatial model combining SLAM, vi-
sual search, and conceptual inference, with the possibility to
use spoken dialogue to interact with a human user. We de-
scribed the elements of this model, and demonstrated using a
realistic (and implemented) scenario how PECAS provides a
novel approach to control for autonomous systems.

Acknowledgements
Supported by the EU FP7 ICT Cognitive Systems Integrated
Project “CogX” (FP7-ICT-215181-CogX) and in part by the
Swedish Research Council, contract 621-2006-5420.
For more information see http://cogx.eu.

References
[Bonasso et al., 1997] R. P. Bonasso, R. J. Firby, E. Gat, D. Ko-

rtenkamp, D. P. Miller, and M. G. Slack. Experiences with an
architecture for intelligent, reactive agents. J. of Experimental
and Theoretical Artificial Intelligence, 9(2-3):237–256, 1997.

[Brenner and Nebel, 2009] M. Brenner and B. Nebel. Continual
planning and acting in dynamic multiagent environments. Aut.
Agents and Multi-Agent Sys., 2009. accepted for publication.

[Burgard et al., 2000] W. Burgard, A. B. Cremers, D. Fox,
D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun.
Experiences with an interactive museum tour-guide robot. Artifi-
cial Intelligence, 114(1–2), 2000.

[Gálvez López et al., 2008] D. Gálvez López, K. Sjö, C. Paul, and
P. Jensfelt. Hybrid laser and vision based object search and lo-
calization. In ICRA ’08, pages 2636–2643, 2008.

[Gross et al., 2008] H. M. Gross, H. J. Böhme, C. Schröder,
S. Müller, A. König, C. Martin, M. Merten, and A. Bley. Shop-
Bot: Progress in developing an interactive mobile shopping as-
sistant for everyday use. In SMC ’08, pages 3471–3478, 2008.

[Hawes et al., 2007] N. Hawes, A. Sloman, J. Wyatt, M. Zil-
lich, H. Jacobsson, G. J. Kruijff, M. Brenner, G. Berginc, and
D. Skočaj. Towards an integrated robot with multiple cognitive
functions. In AAAI ’07, pages 1548–1553, 2007.

[Hawes et al., 2009] N. Hawes, M. Brenner, and K. Sjöö. Planning
as an architectural control mechanism. In HRI ’09, pages 229–
230, New York, NY, USA, 2009. ACM.

[Ishiguro et al., 2001] H. Ishiguro, T. Ono, M. Imai, T. Maeda,
T. Kanda, and R. Nakatsu. Robovie: an interactive humanoid
robot. Int. J. Industrial Robot, 28(6):498–503, 2001.

[Jacobsson et al., 2008] H. Jacobsson, N. Hawes, G. J. Kruijff, and
J. Wyatt. Crossmodal content binding in information-processing
architectures. In HRI ’08, 2008.

[Kruijff et al., 2007] G. J. Kruijff, H. Zender, P. Jensfelt, and H. I.
Christensen. Situated dialogue and spatial organization: What,
where. . . and why? International Journal of Advanced Robotic
Systems, 4(1):125–138, 2007.

[Kruijff et al., 2009] G. J. Kruijff, P. Lison, T. Benjamin, H. Jacob-
sson, H. Zender, I. Kruijff-Korbayová, and N. Hawes. Situated
dialogue processing for human-robot interaction. In H. I. Chris-
tensen, G. J. Kruijff, and J. L. Wyatt, editors, Cognitive Systems.
Springer Verlag, 2009. to appear.

[Kuipers, 1977] B. Kuipers. Representing Knowledge of Large-
scale Space. PhD thesis, MIT, 1977.

[Lison and Kruijff, 2008] P. Lison and G. J. Kruijff. Salience-
driven contextual priming of speech recognition for human-robot
interaction. In ECAI ’08, 2008.

[Peltason et al., 2009] J. Peltason, F. H. K. Siepmann, T. P. Spexard,
B. Wrede, M. Hanheide, and E. A. Topp. Mixed-initiative in
human augmented mapping. In ICRA ’09, 2009. to appear.

[Shanahan, 2002] M. Shanahan. A logical account of perception
incorporating feedback and expectation. In KR ’02, pages 3–13,
2002.

[Sidner et al., 2004] C. L. Sidner, C. D. Kidd, C. H. Lee, and N. B.
Lesh. Where to look: A study of human-robot engagement. In
IUI ’04, pages 78–84, 2004.

[Siegwart and et al., 2003] R. Siegwart and et al. Robox at expo.02:
A large scale installation of personal robots. Robotics and Au-
tonomous Systems, 42:203–222, 2003.

[Wood, 1994] S. Wood. Planning and Decision Making in Dynamic
Domains. Ellis Horwood, Upper Saddle River, NJ, USA, 1994.

[Zender et al., 2007] H. Zender, P. Jensfelt, and G. J. Kruijff.
Human- and situation-aware people following. In RO-MAN ’07,
pages 1131–1136, 2007.

[Zender et al., 2008] H. Zender, O. Martı́nez Mozos, P. Jensfelt,
G. J. Kruijff, and W. Burgard. Conceptual spatial representations
for indoor mobile robots. Robotics and Autonomous Systems,
56(6):493–502, 2008.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

32

Integrated Planning and Execution for Robotic Exploration

Conor McGann
Willow Garage,

Menlo Park, California
mcgann@willowgarage.com

Frédéric Py, Kanna Rajan
Monterey Bay Aquarium Research Institute

Moss Landing, California
{fpy, kanna.rajan}@mbari.org

Angel Garcia Olaya
Universidad Carlos III de Madrid

&
Monterey Bay Aquarium Research Institute

agolaya@mbari.org

Abstract
This paper uses Constraint-based Temporal Plan-
ning (CTP) techniques to integrate deliberation
and reaction in a uniform representation for au-
tonomous robot control. We do so by formulating
a control structure that partitions an agent into a
collection of coordinated control loops, with a re-
curring sense, plan, act cycle. Algorithms are pre-
sented for sharing state between controllers to en-
sure consistency during execution and enable com-
positional control. The partitioned structure makes
it practical to apply CTP for both deliberative and
reactive behavior and promises a scalable and ro-
bust approach for control of real-world autonomous
robots operating in dynamic environments. The
resulting framework is independant of the domain
and provides a principled approach to building au-
tonomous systems.

1 Introduction
The ocean plays a crucial role in the ecosystem of our planet.
This vast, hostile, unstructured and unpredictable environ-
ment has proven resistant to extensive scientific study. Its
depths are largely inaccessible to humans, and impervious
to surface and space based observation techniques. Oceano-
graphic ship-based measurements have recently been aug-
mented by untethered robotic platforms such as Autonomous
Underwater Vehicles (AUVs) [Yuh, 2000]. They carry so-
phisticated science payloads for measuring important water
properties [Ryan et al., 2005], as well as instruments for
recording the morphology of the benthic environment with
advanced sonar equipment [Thomas et al., 2006]. The exten-
sive payload capacity and operational versatility of these ve-
hicles offer a cost-effective alternative to current methods of
oceanographic measurements. Fig. 1 shows one such AUV,
the Dorado, which can operate to depths of 1500m with its
mid-section water sampler.

As in other domains, marine robots must be proactive in
the pursuit of goals and reactive to evolving environmen-
tal conditions. These concerns must be balanced over short
and long term horizons to consider timeliness, safety and ef-
ficiency. In the ocean for example, a variety of important
upper-water column phenomenon such as Intermediate Neph-
eloid Layers or INLs (fluid sheets of suspended particulate
matter that originate from the sea floor), blooms (patches of
high biological activity) and ocean Fronts, can occur over a

Fig. 1: The Dorado vehicle at sea (left) and its mid-body water sam-
pler (right). The vehicle has a range of optical sensors in the
nose section, a battery aft of the samplers and the CPU and
drive electronics in the tail.

wide range of scales, from thousands of kilometers (fronts
and blooms) down to tens/hundreds of meters, each character-
ized by strong spatio-temporal dependence. This dependence
results in a high degree of unpredictability in the location and
intensity of the phenomena. Further, when events are detected
by surface observations, synoptic multi-disciplinary observa-
tions are necessary below the surface in order to understand
the oceanographic dynamics influencing these processes. To
understand the biological context of such dynamic processes,
water samples also need to be returned to shore.

Such science drivers require our AUV to plan a number
of survey transects in advance, while being proactive in trig-
gering water samplers within feature hotspots. Additionally,
variability of ocean currents and lack of localization under-
water also requires the AUV to compensate its navigation for
errors to stay within a survey area. To do so, the AUV may
reasonably deliberate for many minutes if necessary; in con-
trast, instrument and vehicle control decisions require faster
reaction times but can be taken with a more myopic view of
implications to the plan. This suggests that the control re-
sponsibilities of the agent can be partitioned to exploit dif-
fering requirements in terms of which state variables need to
be considered together, over what time frames, and at what
reaction rates.

Current AUV control systems [Bellingham and Leonard,
1994] are a variant of the behavior-based Subsumption archi-
tecture [Brooks, 1986] which rely on manually scripted plans
generated a priori. This prevents in-situ adaptation of mis-
sion structure essential to improving operation in a dynamic
environment and to pursue unanticipated science opportuni-
ties.

We have developed and deployed an onboard adaptive con-
trol system that integrates Planning and Probabilistic State
Estimation in a hybrid Executive [McGann et al., 2008b;
2008a]. Probabilistic State Estimation integrates a number

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

33

of science observations to produce a likelihood that the vehi-
cle sensors perceive a feature of interest. Onboard planning
and execution enables adaptation of navigation and instru-
ment control based on the probability of having detected such
a phenomenon. It further enables goal-directed commanding
within the context of projected mission state and allows for
replanning for off-nominal situations and opportunistic sci-
ence events. This paper focuses on the impact of partitioning
to robust plan synthesis and execution; lack of space prohibits
discussion of Probabilistic State Estimation within this frame-
work with no loss of generality of the concepts described.

The novelty of this work is two-fold. We integrate deliber-
ation and reaction systematically over different temporal and
functional scopes within a single agent and a single model
that covers the needs of high-level mission management, low-
level navigation, instrument control, and detection of unstruc-
tured and poorly understood phenomena. Secondly, we break
new ground in oceanography by allowing scientists to cost-
effectively obtain samples precisely within a scientific feature
of interest using an autonomous robot. Together our work has
resulted in the only operational AUV anywhere being used for
routine scientific surveys with onboard deliberation.

The remainder of this paper is organized as follows. Sec-
tion 2 places this work in the context of other integrated plan-
ning and execution frameworks followed by section 3 that in-
troduces key concepts and definitions. The core of the pa-
per is in section 5 on partitioned control which presents al-
gorithms for coordinated control and synchronization of state
along with complexity analysis. Finally we conclude in sec-
tion 6 with empirical data both on shore and at sea.

2 Related Work

The dominant approach for building agent control systems
utilize a three-layered architecture [Gat, 1998], notable ex-
amples of which include IPEM [Ambros-Ingerson and Steel,
1988], ROGUE [Haigh and Veloso, 1998], the LAAS Archi-
tecture [Alami et al., 1998], the Remote Agent Experiment
[Muscettola et al., 1998] and ASE [Chien et al., 1999] (see
[Knight et al., 2001] for a survey). Scalability is of con-
cern since the planning cycle in these approaches is mono-
lithic often making fast reaction times impractical when nec-
essary. Many of these systems also utilize very different tech-
niques for specifying each layer in the architecture resulting
in duplication of effort and a diffusion of knowledge. This
work builds on the approach used by IDEA [Muscettola et al.,
2002] in utilizing a collection of controllers, each interleav-
ing planning and execution in a common framework. IDEA
however, provides no support for conflict resolution between
controllers, nor does it provide an efficient algorithm for in-
tegrating current state within a controller, relying instead on
a possibly exponential planning algorithm. Efficient synchro-
nization of state in a partitioned structure is fundamental to
making the approach effective in practice.

The contribution of this paper is in providing a formal basis
for partitioning a complex control problem to achieve scala-
bility and robustness and an approach for synchronization in
polynomial time. The key ideas in this paper are independent
of the domain and provide a principled approach to building
autonomous systems.

3 System Overview
We formally define an agent control structure as a composi-
tion of coordinated control loops with a recurring sense, plan,
act (SPA) cycle. Representational primitives in our frame-
work are based on the semantics of Constraint-based Tem-
poral Plans [Jónsson et al., 2000; Frank and Jónsson, 2003]
using unified declarative models.

Each control loop operates on its own partial plan. Feed-
back maps to new open conditions in the partial plan which
are resolved through a synchronization algorithm. Time is
discrete, and synchronization occurs when the discrete clock
transitions. A planner also operates on this partial plan, re-
solving flaws over a time horizon specific to that control loop.
Flaws for the planner arise from the model and from goals
requested from external sources. The planner runs as neces-
sary between discrete time transitions. Execution involves
dispatching elements of a partial plan over a selected dis-
patch time window. In a system with multiple control loops,
there will be multiple partial plans. Where information is
shared between control loops, the intersection of partial plans
(shared state variables over common time horizons) must be
maintained. We manage the information flow within the par-
titioned structure to ensure consistency in order to direct the
flow of goals and observations in a timely manner. The result-
ing control structure improves scalability since many details
of each controller can be encapsulated within a single control
loop. Furthermore, partitioning increases robustness since
controller failure can be localized to enable graceful system
degradation, making this an effective divide-and-conquer ap-
proach to the overall control problem.

The key idea underlying our approach is that the shared
state between control loops will be substantially smaller than
their combined state and that this will make operations on a
partial plan more efficient, bound the impacts of plan failures
and simplify planning by reducing the scope of any one plan-
ning problem.

4 Definitions
We formally define a situated agent in a worldW by:
• A set of state variables: S = {s1, . . . , sn}
• A lifetime: H = [0,Π) defining the interval of time in

which the agent will be active. H ⊆ N.
• The execution frontier: τ ∈ H is the elapsed execution

time as perceived by the agent. This value increases as
time advances in W . The unit of time is called a tick.
The agent observes and assumes world evolution at the
tick rate; changes between ticks are ignored.

During its lifetime an agent observes the evolution of the
world through S via timelines as the execution frontier ad-
vances [Muscettola et al., 2002].

Definition 1 A timeline, L, is defined by:
• a state variable: s(L) ∈ S.
• a set of tokens assigned to this timeline: T (L). Each

token t ∈ T (L) expresses a constraint on the value of
s over some temporal extent. A token p(start, end,−→x)
indicates that the predicate p with its attributes −→x holds
for the temporal domain [start, end) where start and
end are flexible temporal intervals.
• an ordered set Q(L) ⊆ T (L) of tokens describing the

evolution of the state variable over time.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

34

We use the notation, L(t) to refer to the set of the tokens
ordered in the timeline L that overlaps time t:

L(t) = {a; a ∈ Q(L) ∧ a.start ≤ t < a.end}

We introduce a primitive for control called a reactor with
which the global control structure is composed. Coordina-
tion is based on an explicit division of authority for deter-
mining the value for each state variable among the set of re-
actors, R. A reactor may own or use one or more state vari-
ables. A state variable s is owned by one and only one reactor
r (owns(r, s)) which has the unique authority to determine
the value for that state variable as execution proceeds. Con-
versely, a reactor r uses a state variable s (uses(r, s)) if it
needs to be notified of changes (observations) or it needs to
request values for this state variable (goals). Coordination is
also based on explicit information about the latency and tem-
poral scope or look-ahead of deliberation of a reactor. This
information is used to ensure information is shared as needed
and no sooner.

Fig.2 shows an

T-REX Agent

Vehicle Functional Layer

Executive

Mission Manager

Science
Operator

Navigator

Goals Observations

Fig. 2: An agent is composed of multiple
reactors or control loops.

agent with four
reactors. A Mission
Manager provides
high-level directives
to satisfy the scien-
tific and operational
goals of the mission:
its temporal scope
is the entire mission
and it can take min-
utes to deliberate;
the Navigator and
Science Operator
manage the execu-
tion of sub-goals generated by the Mission Manager and
could deliberate within a second. The temporal scope for
both is in the order of a minute. The Executive encapsulates
access to functional layer commands and state variables. It is
approximated as having zero latency with no deliberation.

Definition 2 Each reactor r is a controller defined by:
• a latency: λr is the maximum amount of time the reactor
r can use for deliberation.
• a look-ahead: πr ∈ [λr,Π] defines the temporal dura-

tion over which reactor r deliberates. When deliberation
starts for reactor r, its planning horizon is:

hr = [τ + λr, τ + λr + πr) (1)

• a set of internal timelines: Ir = {I1, . . . , Ik}. Time-
lines in Ir refer to state variables reactor r owns.
• a set of external timelines: Er = {E1, . . . , El}. Time-

lines in Er refer to state variables reactor r uses. ε(s)
defines all external timelines referring to a given state
variable s as ε(s) = {E : E ∈ ∪r∈REr, s(E) = s}
• a set of goal tokens: Gr. Goal tokens express con-

straints on the future values of a state variable owned
by this reactor.
• a set of observation tokens: Or. Observation tokens

express present and past values of a state variable used
by this reactor. They must be identical to the corre-
sponding values of this state variable as described by
its owner.

reactor 1

reactor 2

Internal
timeline

External
timeline

τ

Obs1 Obs2

Obs1 Obs2 Goal

O3

O3

λ2 π2

[τ+1, +∞]

[τ+1, 100] [95, 100] [96, + ∞]

Fig. 3: Two reactors sharing one state variable. Observations from
the past are consistent while projections in the future can
differ to reflect each reactor’s plan.

• a model: Mr. The model defines the rules governing
the interactions between values on and across timelines.

Fig.3 illustrates the above definition.
We consider a special set of reactors, Rw, which includes

all reactors r that have no external dependency (i.e Er = ∅).
In practice, such primitive reactors encapsulate the exogenous
state variables of the agent. We further define the model for
the agent,Mw, as the union of all models of each individual
reactor:Mw =

⋃
r∈RMr

5 Partitioned Control
Partitioning exploits a divide-and-conquer problem solving
principle where each reactor manages a component of the
agent control problem thereby allowing deliberation and re-
action at different rates, over different time horizons and on
different state variables. More importantly, partitioning al-
lows plan failures to be localized within a control loop with-
out exposure to other parts of the system. In this section we
present the overall control loop for coordinating these reac-
tors and detail how synchronization of state is accomplished
efficiently.

5.1 The Agent Control Loop
The agent coordinates the execution of reactors within a
global control loop based on the SPA paradigm. The uses and
owns relations provide the necessary detail to direct the flow
of information between reactors. Observations flow from
each reactor that owns a state variable to all reactors that uses
it during a process called synchronization. Goals flow from
reactors that uses a state variable to the reactor that owns it
through a process called dispatching. Dispatching involves
posting tokens from each external timeline e in a complete
plan as goals for the reactor r where owns(r, s(e)) over a
horizon given by hr in (1). Deliberation is the process of
planning an evolution of state variables from current values
to requested values. Synchronization, deliberation and dis-
patching are steps of the core agent control loop described in
Algorithm 1.

The agent executes the set of reactors,R, concurrently. Ex-
ecution of the loop occurs once per tick. Each step begins at
the start of a tick by dispatching goals from users to owners.
The agent then synchronizes state across all reactors in R at
the execution frontier, τ . If there is deliberation to be done, it
must be preemptible by a clock transition which occurs as an
exogenous event.

5.2 Synchronization
In a partitioned control structure, opportunities for inconsis-
tency exist since each reactor has its own representation for
the values of a state variable. While we allow divergent views
of future values of a timeline to persist, we require that all

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

35

Algorithm 1 The agent control loop

RUN(R, τ,Π)
1 if τ ≥ Π then return ; // If the mission is over, quit

// Dispatch goals for all reactors for this tick
2 DISPATCH(R, τ);

// Synchronize. If no reactor left afterwards, quit
3 R′ ← SYNCHRONIZEAGENT(R, τ); // Alg. 2
4 ifR′ = ∅ then return ;

// Deliberate in steps until done or the clock transitions
5 δ ← τ + 1;
6 done ← ⊥;
7 while δ > τ ∧ ¬ done
8 do done ← DELIBERATE(R′, τ);
9 while δ > τ do SLEEP; // Idle till the clock transitions

// Tail recursive, with possibly reduced reactor set
10 RUN(R′, τ,Π);

timelines converge at the execution frontier after synchroniza-
tion. For an agent to be complete, agent state variables must
have a valid value at τ . It is the responsibility of the owner re-
actor to determine this value during synchronization and the
responsibility of users of that state variable to reconcile their
internal state with this observation. This explicit ownership
specification enables conflict resolution.
Requirements
The concept of a flaw [Bedrax-Weiss et al., 2003] i.e a po-
tential inconsistency that must be resolved, is central to the
definition of synchronization. We are concerned with flaws
that may render the state of the reactor inconsistent at the ex-
ecution frontier. More specifically, we are concerned with
any token t that necessarily impacts any timeline L of a reac-
tor r at the execution frontier τ , which has not been inserted
inQ(L). Formally a flaw is a tuple f = (t, L) that is resolved
by insertion in Q(L).
Definition 3 A reactor r is synchronized for τ , denoted
s(r, τ), when the following conditions are satisfied:
• All flaws are resolved at τ when Fτ (r) = ∅, where
Fτ (r) returns an arbitrarily ordered set of flaws of a
reactor for synchronization at the execution frontier. A
formal definition of Fτ (r) follows in Definition 4.
• All internal and external timelines have a unique valid

value at τ , i.e there are no “holes” or conflicts in the
timeline:

∀L ∈ (Ir ∪ Er),∃o ∈ T (L) : L(τ) = {o} (2)
• All external timelines have the same value as the cor-

responding internal timeline of the owner reactor at τ .
This ensures that every reactor shares a consistent view
of the current state of the world.

Synchronization of the agent means synchronization of its
reactors: ∀r ∈ R : s(r, τ)
Assumptions
We introduce a number of reasonable assumptions to reduce
synchronization complexity to polynomial time. Our ap-
proach builds on the semantics of the partitioned structure
to enable synchronization of the agent via incremental local
synchronization of each reactor.

The agent percieves the world using the Synchronous hy-
pothesis [Berry and Gonthier, 1991] and observes the world
only at tick boundaries. From the perspective of a reactor,
observations are taken as facts that are exogenous and mono-
tonic: once an observation is published/received, it cannot be
retracted. We call this the Monotonicity Assumption (MA). It
implies that a reactor r will publish an observation o starting
at τ only if it owns the corresponding timeline and it has been
fully synchronized for this tick (s(r, τ) = >).

The last observation made on an external timeline is valid
until a new observation is received. We call this the Inertial
Value Assumption (IVA). It implies that once a reactor has
received all the observations for its external timelines at τ ,
all external timelines E ∈ Er that do not have an associated
observation o for this tick will consider that the previous state
still holds :

(@o ∈ Or ∩ T (E) : o.start = τ)⇒ E(τ).end > τ (3)

This assumption ensures that all values of an external timeline
contain an observation up till τ . Consequently we require an
initial observation at τ = 0. In the case of internal timelines,
the modelMw must specify the value to assign in all cases.
A corollary of the MA is that the IVA should not be applied
for a reactor r1 until:

∀r2 ∈ R, r1 � r2 : s(r2, τ) (4)

where � is a relation defined as follows:

∀r1, r2 ∈ R :(
∃s ∈ S; uses(r1, s) ∧ owns(r2, s)

)
⇒ r1 � r2

(∃r3 ∈ R; r1 � r3 ∧ r3 � r2)⇒ r1 � r2

(4) imposes a strong relation between the synchronization
of a reactor and the structure in the dependency graph (de-
fined by �). Indeed, even though we could allow cyclic
dependencies between reactors this would require iteration
though this graph until we find a fixed point where all reactors
are synchronized.

To avoid thus we ensure � is a partial order (ie r1 � r2 ⇒
¬(r2 �r1)) Consequently, all reactors are distributed across a
directed acyclic graph (DAG) where the root nodes are the re-
actors of RW . This Acyclic Dependency Assumption (ADA)
ensures synchronization is achievable via iteration through a
linear transformation of the partial order � (denoted byR[i]).
Where state variables are cyclically dependent, they must be
owned by the same reactor. Absent this assumption, global
synchronization requires iterative local synchronization to a
fixed point which cannot guarantee polynomial time conver-
gence necessary for real-world systems.

Determining how to arrive at a suitable partition design is
challenging; [Salido and Barber, 2006] offers a promising di-
rection in using constraint cliques.
Synchronizing the Agent
Algorithm 2 shows how the agent is synchronized by syn-
chronizing each reactor in the order defined by R[i]. It is
possible that a reactor may fail to synchronize. Such a failure
implies that no consistent and complete assignment of values
was possible for its timelines, and usually indicates an error
in the domain model. Under these conditions, the agent must
remove the reactor as well as all its dependents from the con-
trol structure in order to satisfy the requirements for consis-
tent and complete state. This failure mode offers the potential

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

36

for graceful degradation in agent performance with the possi-
bility of continued operation of reactors implementing safety
behaviors.

Algorithm 2 Agent synchronization

SYNCHRONIZEAGENT(R, τ)
1 Rin ← ∅;
2 Rout ← ∅;
3 for i← 1 to SIZE(R)

// Get next reactor on dependency list
4 do r ← R[i];
5 if (∃rout ∈ Rout : r � rout)

∨¬SYNCHRONIZE(r, τ) // Alg. 3
// If r cannot be synchronized exclude it

6 thenRout ← Rout + r;
7 else Rin ← Rin + r;

// Return the reactors that are still valid
8 returnRin;

Synchronizing a Reactor
Algorithm 3 describes synchronization of a reactor. Synchro-
nization begins by applying IVA to extend the current values
of external timelines with no new observations according to
(3). Relaxation is required if planning has taken longer than
permitted (> λr) or if there is no complete and consistent
refinement of the set of flaws at the execution frontier (see
Algorithm 4). Relaxation decouples restrictions imposed by
planning from entailments of the model and execution state
by deleting the plan but retaining observations and commit-
ted values. Goals must be re-planned in a subsequent delib-
eration cycle. After relaxation, a second attempt is made to
complete the execution frontier. If this fails, synchronization
fails and the reactor will be taken off line by the agent. If this
succeeds, the reactor will iterate over its internal timelines,
publishing new values to its users. Finally, at every step of
synchronization, a garbage collection algorithm is executed
cleaning out tokens in the past with no impact to the present
or future. Details of garbage collection and plan relaxation
are outside the scope of this paper.
Resolving Flaws at the Execution Frontier
We now define Fτ (used in Definition 3) and describe its ap-
plication in the function RESOLVEFLAWS used to synchro-
nize a reactor. The components of this definition are:
• the temporal scope of the execution frontier which we

define to include the current state (i.e. tokens that con-
tain τ) and the prior state (i.e. tokens that contain τ −1).
• an operator Fπ which returns the set of flaws for delib-

eration. Flaws in Fπ should not be in Fτ . The intuition
is to check if a token is a goal, or if it there is a path from
the token to a goal in the causal structure of the plan.
• a unit decision operator U for a flaw, f, that excludes

flaws that can be placed at more than one location around
τ in Q(f.L):

U(f)⇒
(
∀q1, q2 ∈ (f.L(τ − 1) ∪ f.L(τ)) :

(q1 ⊗ f.t) ∧ (q2 ⊗ f.t)⇒ q1 = q2

)
where ⊗ indicates that two tokens can be merged:
p1(s1, e1,−→x1)⊗ p2(s2, e2,−→x2)⇒

Algorithm 3 Single reactor synchronization

SYNCHRONIZE(r, τ)
// Apply IVA to extend current observations

1 for each E ∈ Er
2 do if (@o ∈ Or ∩ T (E); o.start = τ)
3 then E(τ).end← E(τ).end ∩ [τ + 1,∞];

// Complete execution frontier
4 if (τ ∈ hr ∨ ¬COMPLETE(r, τ)) // Alg. 4
5 then if (¬RELAX(r, τ) ∧ ¬COMPLETE(r, τ)) // Alg. 4
6 then return ⊥

// Publish new state values to users of internal timelines
7 for each I ∈ Ir
8 do State ← I(τ);
9 if State[0].start = τ

10 then for each E ∈ ε(s(I))
11 do T (E)← T (E) ∪ State;
12 O(E)← O(E) ∪ State;

// Clean out tokens in the past that have no impact
13 GARBAGECOLLECT(r, τ);
14 return >;

(p1 = p2) ∧ (s1 ∩ s2 6= ∅) ∧ (e1 ∩ e2 6= ∅) ∧
(@x ∈ −→x1 ∩ −→x2;x = ∅)

Definition 4 For a given reactor r, the set of synchroniza-
tion flaws Fτ (r) is defined by the set of flaws f /∈ Fπ(r)
that overlaps the execution frontier τ and are unit decisions
(U(f) = >).
The call to the function RESOLVEFLAWS(r, τ) iteratively se-
lects one of the flaws in Fτ (r) and resolves it by insertion in
its timeline until Fτ (r) is empty. Insertion may be infeasible
indicating that no complete and consistent refinement of the
current execution frontier is possible. [Bernadini and Smith,
2007] describes token insertion in a partial plan.
Completion
Algorithm 4 utilizes RESOLVEFLAWS to complete synchro-
nization. It begins by resolving all the available flaws. Res-
olution of the set of flaws is a necessary condition for com-
pleteness. However, it is not a sufficient condition for two
reasons. First, it is possible that holes may exist in the in-
ternal timelines (application of IVA ensures that all external
timelines are complete) that must be filled. Second, it is pos-
sible that the end time for the current token in an internal
timeline I , is an interval. This must be restricted so that I(τ)
returns a singleton after synchronization; see (2). To address
this we define a policy to complete an internal timeline under
these conditions. For the first case, MAKEDEFAULTVALUE
will generate a default value according to the model which is
inserted to fill the hole. In the second case, the end time of
the current value will be extended. These modifications may
generate more flaws in turn. For example, tokens previously
excluded from synchronization by U may now become unit
decisions. Furthermore, additional rules in the model may
now apply. Consequently, we invoke RESOLVEFLAWS again.

5.3 Complexity Analysis
We now consider the complexity of synchronizing an agent.
The key result is that synchronization is a polynomial time

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

37

Algorithm 4 Completion of the execution frontier

COMPLETE(r, τ)
1 if ¬RESOLVEFLAWS(r, τ)
2 then return ⊥

// Complete Internal Timelines
3 for each I ∈ Ir
4 do v← I(τ);

// Fill with default value if empty
5 if v = ∅
6 then INSERT(I, MAKEDEFAULTVALUE(I, µr, τ));
7 else v[0].end← v[0].end ∩ [τ + 1,∞];
8 return RESOLVEFLAWS(r, τ);

multiple of the cost of primitive operations on a plan. We as-
sume the following operators are executed in amortized con-
stant time:
• Fτ The operator to obtain the sequence of flaws in the

execution frontier.
• INSERT(L, t) The procedure to insert a token t in time-

line L.
• MAKEDEFAULTVALUE(L, µr, τ) The procedure to gen-

erate a default token for timeline L.
We further assume:
• GARBAGECOLLECT is linear in the number of tokens in

the past that have not yet been removed.
• RELAX is linear in the number of tokens in all timelines.
• Insertion of a token by merging with an existing token

generates no new flaws.
• The costs of ⊗,∩,∪ as used in synchronization are

bounded and negligible.
Consider the procedure RESOLVEFLAWS. This procedure

is linear in the number of flaws, since for each flaw encoun-
tered, it is resolved by an insertion operation within amortized
constant time with no backtracking. Assume a reactor r has
Nr timelines. In the worst case, every timeline in a reactor
will require a new value for the current and prior tick. As-
sume that in the worst case, every new value generates a flaw
for every other possible position in all timelines in the execu-
tion frontier (i.e. 2Nr -1 flaws per new value). This gives a
maximum complexity for RESOLVEFLAWS of 2Nr × (2Nr-
1) or O(Nr2). In the worst case, the procedure COMPLETE
calls RESOLVEFLAWS twice. However, if simply refining the
execution frontier, this does not change the cumulative num-
ber of flaws. Since iteration over the internal timelines is lin-
ear in a value ≤ Nr, we have a complexity of O(Nr2) for
Algorithm 4.

In the worst case, synchronization of a reactor (Algorithm
3) incurs the following costs:
• O(Nr) to complete external timelines
• O(Nr2) to call COMPLETE the first time, which we as-

sume will fail.
• O(Pr) to RELAX the plan where P is the number of to-

kens in the plan.
• O(Nr2) to call COMPLETE the second time, which we

assume will succeed.
• O(Nr) to publish observations

• O(Hr) to garbage collect where H is the number of to-
kens in the plan that have passed into history.

Since synchronization of the agent is accomplished by iter-
ation over the set of reactors, without cycling, the worst case
time complexity for synchronization is given by:

O(s) = O(
∑
r∈R
N 2
r + Pr +Hr) (5)

6 Experimental Results
In this section we evaluate the performance of synchroniza-
tion in partitioned and non-partitioned control structures.
When plan operations are constant time, we show that syn-
chronization is O(N2) in the worst case. Moreover, we
demonstrate that actual costs of synchronization are accrued
based on what changes at the execution frontier, making it
efficient in practice. We further demonstrate that since op-
erations on a plan are typically not constant time, but vary
in diverse and implementation dependent ways according to
plan size, partitioning control loops can reduce the net cost of
synchronization and deliberation.

The following results are based on our current implementa-
tion of the framework with each reactor using the same CTP
based planner using chronological-backtracking refinement
search to deliberate. The agent invokes each reactor as de-
fined in the Algorithm 1. Our lab experiments were executed
on a MacBook Pro running at 2 Ghz.

Fig. 4 shows results of a run with a single reactor configu-
ration where each problem instance runs for 50 time ticks.
A set of problem instances were generated by modifying
the number of internal timelines (I) and the connectivity of
the constraint graph (C). There is no deliberation involved.
CPU usage for synchronizing the agent is measured at every
tick, and averaged over all ticks. The figure shows that av-
erage synchronization cost increases linearly in I and C and
quadratically as the product of I and C.

Fig. 5 shows the impact of a good partitioning scheme on
problem solving, by varying the partitioned structure of an
agent without changing the number of timelines being syn-
chronized. We used 120 internal timelines spread evenly
across all reactors. For each problem instance we distributed
the timelines between a varying number of reactors between 1
and 120. This problem was designed to show the dependency
between timelines exhibiting both abstraction and functional
separation. With 120 reactors there is only 1 timeline per re-
actor and the agent control structure is maximally partitioned.
Deliberation fills out the timeline with 1 token per tick for 10
ticks with no search required. For each problem, the cumu-
lative synchronization and deliberation CPU usage was mea-
sured. As illustrated, a good partition design not only reduces

0 5 10 15 20 25 30
0

10
20

30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of internal timelines (I)
Relations per timeline

(C)

Sy
nc

hr
on

iz
at

io
n

co
st

 (s
)

Fig. 4: The relationship between synchronization time, number of
constraints and number of internal timelines.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

38

0.5

1

D
e
li
b

e
ra

ti
o

n
 c

o
s
t

(s
)

12010654321
0

10

20

30

Number of reactors

S
y

n
c

h
ro

n
iz

a
ti

o
n

 c
o

s
t

(s
)

Deliberation Synchronization

Fig. 5: Synchronization costs associated with partitioning.

deliberation cost per tick but can also potentially reduce syn-
chronization costs resulting in a more efficient system design.

Using the same model we use in our sea trials, Fig. 6 com-
pares system robustness between 3 and 4 reactors (3r and 4r
respectively); Fig. 2 shows the 4r configuration; 3r was a
combination of the Science Operator and Navigator into a
single reactor. We limited the number of deliberation steps al-
lowed at each tick and did several runs in both configurations
to measure the scalability of our approach. The steps/tick is
a proxy for the computational power of the CPU; larger the
number of steps/tick, the more computational power is avail-
able (for example, our AUVs embedded CPU at 357 MHz is
capable of 60 steps/tick where a tick is 1 sec). The impli-
cation of such a proxy measure is in enabling system design
evaluation where problem solving is weighed against avail-
able compute power of the platform as well as the partition
design.

Fig. 6 shows that deliberation time is uniform between
3r and 4r especially when both configurations converge on a
plan. Conversely with limited computation power in the em-
bedded processor, this figure shows that an agent with more
partitions would succeed where another with fewer reactors
does not. While the 4r agent was able to complete missions
with as few as 21 steps/tick, the 3r agent needed at least 24
steps/tick.

For experiments with 15 and 18 steps/tick, the 4r agent
while rejecting the original mission goals, was able to safely
terminate the mission by dispatching safety commands to the
vehicle. In contrast the 3r agent with a merged reactor, is
unable to complete the goal or send safety commands in time
for graceful recovery (in the field such a configuration would
have risked vehicle safety). In 20 steps/tick scenarios, the
4r agent fails; there are sufficient number of steps/tick for
deliberation in more abstract reactors. But the lowest-level
reactor is unable to cope with both the goals dispatched to
it, as well as in dealing with dispatching safety commands,
hence running out of time and leading to mission failure.

These experiments indicate a possible improvement of re-
actor scheduling; those reactors that are deadline limited
should be granted a larger slice of the CPU with more
steps/tick. Additionally, our intuition is that for each reactor
configuration, there is also a likely phase transition [Cheese-
man et al., 1991] between successful execution and mission
failure which is a smaller steps/tick for larger partitions. Fi-
nally, it is important to note that 4r is able to fail gracefully
(between 15 and 18 steps/tick) in comparison to 3r below this
transition limit. Exploring these transition phenomena is part
of our future work.

Fig. 7 shows the performance gain between 4r and 3r con-
figurations for a 7 hour mission. The y-axis ratio between
3r and 4r includes time to deliberate and synchronize. 4r is
1.14 times faster than 3r at peak and subsequently stabilizes
around 1.04 showing that 4r is on average faster. Both config-

steps per

tick
3 reactors3 reactors3 reactors3 reactors 4 reactors4 reactors4 reactors4 reactors

user maximum
tick

% complete usertime/tick user maximum
tick

% complete usertime/tick

6 0.645 8 0.5625 0.080625 0.752 8 0.5625 0.0946

0.648 8 0.5625 0.081 0.756 8 0.5625 0.0945

6

0.644 8 0.5625 0.0805 0.759 8 0.5625 0.094875

6

0.645666667 8 0.5625 0.080708333 0.755666667 8 0.5625 0.094458333

15 0.965 16 1.0625 0.0603125 33.081 1599 100 0.02068855515

0.965 16 1.0625 0.0603125 33.227 1599 100 0.020779862

15

0.961 16 1.0625 0.0600625 33.771 1599 100 0.021120075

15

0.963666667 16 1.0625 0.060229167 33.35966667 1599 100 0.020862831

18 1 15 1 0.066666667 40.655 1599 100 0.02542526618

1.011 15 1 0.0674 35.548 1599 100 0.022231395

18

1.009 15 1 0.067266667 35.313 1599 100 0.022084428

18

1.006666667 15 1 0.067111111 37.172 1599 100 0.023247029

20 1.009 15 1 0.067266667 1.129 17 1.125 0.06641176520

1.027 15 1 0.068466667 1.113 17 1.125 0.065470588

20

1.019 15 1 0.067933333 1.111 17 1.125 0.065352941

20

1.018333333 15 1 0.067888889 1.117666667 17 1.125 0.065745098

21 1.04 15 1 0.069333333 32.824 1599 100 0.0205278321

1.027 15 1 0.068466667 35.256 1599 100 0.02204878

21

1.027 15 1 0.068466667 34.230 1599 100 0.021407129

21

1.031333333 15 1 0.068755556 34.10333333 1599 100 0.021327913

22 1.079 15 1 0.071933333 38.779 1599 100 0.02425203322

1.064 15 1 0.070933333 37.706 1599 100 0.023580988

22

1.084 15 1 0.072266667 37.493 1599 100 0.02344778

22

1.075666667 15 1 0.071711111 37.99266667 1599 100 0.023760267

23 1.1 15 1 0.073333333 32.911 1599 100 0.02058223923

1.071 15 1 0.0714 32.808 1599 100 0.020517824

23

1.089 15 1 0.0726 32.161 1599 100 0.020113196

23

1.086666667 15 1 0.072444444 32.62666667 1599 100 0.020404419

24 31.710 1599 100 0.019831144 31.950 1599 100 0.01998123824

31.349 1599 100 0.019605378 31.758 1599 100 0.019861163

24

31.258 1599 100 0.019548468 31.763 1599 100 0.01986429

24

31.439 1599 100 0.019661664 31.82366667 1599 100 0.019902231

25 31.751 1599 100 0.019856785 31.980 1599 100 0.0225

32.595 1599 100 0.020384615 31.732 1599 100 0.019844903

25

31.144 1599 100 0.019477173 35.989 1599 100 0.022507192

25

30.773 1599 100 0.019245153 33.457 1599 100 0.020923702

25

31.56575 1599 100 0.019740932 33.2895 1599 100 0.020818949

26 31.087 1599 100 0.019441526 31.992 1599 100 0.02000750526

31.434 1599 100 0.019658537 33.155 1599 100 0.020734834

26

31.834 1599 100 0.019908693 38.004 1599 100 0.023767355

26

34.856 1599 100 0.021798624 32.677 1599 100 0.020435897

26

32.30275 1599 100 0.020201845 33.957 1599 100 0.021236398

30 33.944 1599 100 0.021228268 32.110 1599 100 0.02008130130

31.524 1599 100 0.019714822 32.275 1599 100 0.02018449

30

31.182 1599 100 0.019500938 31.953 1599 100 0.019983114

30

32.21666667 1599 100 0.020148009 32.11266667 1599 100 0.020082969

50 31.158 1599 100 0.019485929 34.258 1599 100 0.0214246450

31.157 1599 100 0.019485303 38.447 1599 100 0.024044403

50

31.129 1599 100 0.019467792 33.031 1599 100 0.020657286

50

31.148 1599 100 0.019479675 35.24533333 1599 100 0.02204211

100 31.5 1599 100 0.019699812 34.466 1599 100 0.021554722100

30.825 1599 100 0.019277674 32.445 1599 100 0.020290807

100

30.879 1599 100 0.019311445 33.494 1599 100 0.020946842

100

31.068 1599 100 0.019429644 33.46833333 1599 100 0.02093079

1000 31.628 1599 100 0.019779862 32.709 1599 100 0.020455911000

36.640 1599 100 0.022914321 33.411 1599 100 0.020894934

1000

30.733 1599 100 0.019220138 31.804 1599 100 0.019889931

1000

33.00033333 1599 100 0.020638107 32.64133333 1599 100 0.020413592

steps

3 reactors3 reactors3 reactors 4 reactors4 reactors4 reactors

max tick time/

ticks (ms)

%

complete

max tick time/

ticks (ms)

%

complete

6

15

18

20

21

22

23

24

25

26

30

50

100

1000

8 81 0.56% 8 94 0.56%

16 60 1.06% 1599 21 100.00%

15 67 1.00% 1599 23 100.00%

15 68 1.00% 17 66 1.13%

15 69 1.00% 1599 21 100.00%

15 72 1.00% 1599 24 100.00%

15 72 1.00% 1599 20 100.00%

1599 20 100.00% 1599 20 100.00%

1599 20 100.00% 1599 21 100.00%

1599 20 100.00% 1599 21 100.00%

1599 20 100.00% 1599 20 100.00%

1599 19 100.00% 1599 22 100.00%

1599 19 100.00% 1599 21 100.00%

1599 21 100.00% 1599 20 100.00%

0

20

40

60

80

100

6 15 18 20 21 22 23 24 25 26 30 50 100 1000

computation time per tick (ms)

3 reactors 4 reactors

maximum number of steps per tick

0.10%

1.00%

10.00%

100.00%

6 15 18 20 21 22 23 24 25 26 30 50 100 1000

percentage of mission completed

3 reactors 4 reactors

Mission failure

Goal rejected Full mission completion

Fig. 6: Comparative analysis between 4r & 3r configurations. The
figure on top shows likely phase transitions for partition de-
sign for 4r & 3r.

urations exhibit a similar plan with comparable vehicle path
and reactivity. Lack of space precludes detailed descriptions
of plan trajectories.

Our framework has been integrated onboard our Dorado
platform (Fig. 1) and deployed for scientific exploration in
Monterey Bay, California [McGann et al., 2008c]. The agent
runs on a 367 MHz EPX-GX500 AMD Geode stack using
Red Hat Linux, with the functional layer running on a sepa-
rate processor on real-time QNX. In November 2008 for ex-
ample, on a mission over the Monterey Canyon, our science
objectives were to carry out a volume survey while estimat-
ing the presence of an INL. The model exhibited both long
term planning as well as reactive execution in response to en-
vironmental changes impacting the full scope of the mission.
During the uninterrupted 6 hours and 40 minutes run, our sys-
tem was able to identify the INL features accurately (using
Probabilistic State Estimation which is out of scope for this
paper) to bring back targeted water samples from within bi-
ological hotspots. Fig. 8 shows the vehicles transect and the
context of the INL in the water-column detected by the AUVs
sensors. It also shows the vehicle changing its navigation for
sampling resolution, starting with high and ending with low
resolution transects where the INL is not visible to the AUV’s
sensors. Water samples are shown to be taken within the INL
as required. Scientific results from this run in coastal larval
ecology can be found in [Johnson et al., 2008].

7 Conclusion
We introduce a formal framework for specifying an agent
control structure as a collection of coordinated control loops

0 0.5 1 1.5 2 2.5
x 104

0.9

0.95

1

1.05

1.1

tick

cp
u

3
re

ac
to

rs
/ c

pu
 4

 re
ac

to
rs

Fig. 7: Performance gain on 4r as compared to 3r; x-axis shows
time in ticks and y-axis indicates ratio between cumulative
cpu time used by 3r/4r.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

39

p
(IN
L
)

S1

S2

S3

S4

S5

Fig. 8: Visualization of a mission over the Monterey Canyon in
November 2008. Red indicates high probability of INL pres-
ence as detected by onboard sensors. S1-S5 indicate trigger-
ing of 10 water samplers two at a time.

while decoupling deliberation over goals from synchroniza-
tion of agent state. We present algorithms for integrated agent
control within this partitioned structure. For weakly cou-
pled reactors partitioning offers performance improvements
with the overhead of information sharing. Further partition-
ing allows plan failures to be localized within a control loop
without exposure to other parts of the system, while ensuring
graceful system degradation.

8 Acknowledgments
This research was supported by the David and Lucile Packard
Foundation. We are grateful to MBARI oceanographer John
Ryan in helping formulate and drive our technology and our
engineering and operations colleagues for their help in inte-
gration and deployment. We thank NASA Ames Research
Center for making the EUROPA Planner available, Willow
Garage for supporting McGann’s collaboration and the Span-
ish government for Olaya’s fellowship at MBARI.

References
[Alami et al., 1998] R. Alami, R. Chatila, S. Fleury,

M. Ghallab, and F. Ingrand. An Architecture for Auton-
omy. The International Journal of Robotics Research, Jan
1998.

[Ambros-Ingerson and Steel, 1988] J. Ambros-Ingerson and
S. Steel. Integrating Planning, Execution and Monitoring.
Proc. 7th AAAI, Jan 1988.

[Bedrax-Weiss et al., 2003] T. Bedrax-Weiss, J. Frank, A.K.
Jonsson, and C. McGann. Identifying Executable Plans.
In Workshop on Plan Execution, ICAPS, 2003.

[Bellingham and Leonard, 1994] J.G. Bellingham and J.J.
Leonard. Task Configuration with Layered Control. In
IARP 2nd Workshop on Mobile Robots for Subsea Envi-
ronments, May 1994.

[Bernadini and Smith, 2007] S. Bernadini and D. Smith. De-
veloping Domain-Independent Search Control for EU-
ROPA2. In Proc. ICAPS-07 Workshop on Heuristics for
Domain-independent Planning, 2007.

[Berry and Gonthier, 1991] G Berry and G Gonthier. The
Esterel synchronous programming language: Design, se-
mantics, implementation. Technical report, INRIA, 1991.

[Brooks, 1986] R.A. Brooks. A robust layered control sys-
tem for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2:14–23, 1986.

[Cheeseman et al., 1991] P. Cheeseman, B. Kanefsky, and

W. Taylor. Where the really hard problems are. Proceed-
ings of the 12th IJCAI, Jan 1991.

[Chien et al., 1999] S. Chien, R. Knight, A. Stechert,
R. Sherwood, and G. Rabideau. Integrated Planning and
Execution for Autonomous Spacecraft. IEEE Aerospace,
1:263–271 vol.1, 1999.

[Frank and Jónsson, 2003] J. Frank and A. Jónsson.
Constraint-based Attribute and Interval Planning. Con-
straints, 8(4):339–364, 2003.

[Gat, 1998] E. Gat. On Three-Layer Architectures. In D. Ko-
rtenkamp, R. Bonnasso, and R. Murphy, editors, Artifi-
cial Intelligence and Mobile Robots, pages 195–210. MIT
Press, 1998.

[Haigh and Veloso, 1998] K. Haigh and M. Veloso. Inter-
leaving Planning and Robot Execution for Asynchronous
User Requests. Autonomous Robots, Jan 1998.

[Johnson et al., 2008] S. B. Johnson, A. Sherman, R. Marin,
J. Ryan, and R. C. Vrijenhoek. Detection of Marine Larvae
using the AUV Gulper and Bench-top SHA. In 8th Larval
Biology Symposium, Lisbon, Portugal, July 2008.

[Jónsson et al., 2000] A. Jónsson, P. Morris, N. Muscettola,
K. Rajan, and B. Smith. Planning in Interplanetary Space:
Theory and Practice. In AIPS, 2000.

[Knight et al., 2001] R Knight, F Fisher, T Estlin, and B En-
gelhardt. Balancing Deliberation and Reaction, Planning
and Execution for Space Robotic Applications. Proc.
IROS, Jan 2001.

[McGann et al., 2008a] C. McGann, F. Py, K. Rajan, J. P.
Ryan, and R. Henthorn. Adaptive Control for Autonomous
Underwater Vehicles. In AAAI, Chicago, IL, 2008.

[McGann et al., 2008b] C. McGann, F. Py, K. Rajan,
H. Thomas, R. Henthorn, and R. McEwen. A Delibera-
tive Architecture for AUV Control. In ICRA, Pasadena,
CA, May 2008.

[McGann et al., 2008c] C. McGann, F. Py, K. Rajan,
H. Thomas, R. Henthorn, and R. McEwen. Prelimi-
nary Results for Model-Based Adaptive Control of an Au-
tonomous Underwater Vehicle. In Int. Symp. on Experi-
mental Robotics, Athens, Greece, 2008.

[Muscettola et al., 1998] N. Muscettola, P. Nayak, B. Pell,
and B. Williams. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. In AI Journal, volume
103, 1998.

[Muscettola et al., 2002] N. Muscettola, G. Dorais, C. Fry,
R. Levinson, and C. Plaunt. IDEA: Planning at the Core of
Autonomous Reactive Agents. In IWPSS, October 2002.

[Ryan et al., 2005] J. P. Ryan, F. P. Chavez, and J. G.
Bellingham. Physical-Biological Coupling in Monterey
Bay, California: Topographic influences on phytoplank-
ton ecology. Marine Ecology Progress Series, 287:23–32,
2005.

[Salido and Barber, 2006] M. A. Salido and F. Barber. Dis-
tributed CSPs by Graph Partitioning. Applied Mathematics
and Computation, 183:212–237, 2006.

[Thomas et al., 2006] H. Thomas, D. Caress, D. Conlin,
D. Clague, J. Paduan, D. Butterfield J, W. Chadwick, and
P. Tucker. Mapping auv survey of axial seamount. Eos
Trans. AGU, 87(52)(Fall Meet. Suppl., Abstract V23B-
0615), 2006.

[Yuh, 2000] J. Yuh. Design and Control of Autonomous Un-
derwater Robots: A Survey. Autonomous Robots, 8:7–24,
2000.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

40

Application of a Heuristic Function in Reinforcement Learning of an Agent

Anastasia Noglik, Michael Müller, Josef Pauli
Universiẗat Duisburg-Essen

Abteilung für Informatik und Angewandte Kognitionswissenschaft
{ anastasia.noglik, josef.pauli}@uni-due.de

Abstract

The present work examines the possibilities of the
application of a-priori rudimental context knowl-
edge. The aim is to accelerate the learning process
of a rational agent. The properties of the environ-
ment are estimated by means of an estimator func-
tion. The approach is similar to the application of
the heuristic function in the A* search algorithm.
Two methods are proposed that integrate hidden,
context knowledge in form of a heuristic function
into the learning process. Numerous investigations
are performed for the classic Mountain Car Task
(MCT) to measure the impact of the context knowl-
edge on the convergence progress in comparison to
the standard method. Furthermore different types
and methods of discretization of the state space
are considered. The improvements of the learning
process are confirmed for an extended 3D Moun-
tain Agent Task.

1 Introduction
A rational agent has to learn as much as possible by percep-
tion. It can do this by means of paradigms of reinforcement
[Russell and Norvig, 2003]. The improvement of learning
processes is an important task in the theory of rational agents.
One of the advantages of Reinforcement Learning algorithms
(RL algorithms) is the possibility of learning without an ac-
curate or even without any model of the environment[Bert-
sekas, 1995], [Sutton, 1998]. Another advantage is the appli-
cation of past experience into the ongoing decision making
process. This is known as online learning.
One of several issues of RL algorithms is the relatively slow
convergence[Watkins and Dayan, 1992]. This can be avoided
by using robot knowledge and knowledge about the environ-
ment or by applying a suitable discretization. There is only
very few information about the environment available. The
agent gets rudimental knowledge about the environment. For
example the destination is specified. A suitable reward model
tells the agent which behavior is good and which is bad.
In the present work two approaches are suggested and in-
vestigated which are based on heuristics, context knowledge
(heuristic function). For example a heuristic function can
evaluate the distance between the agent and the destination.

This idea is similar to the application of a heuristic function
in the A* search algorithm[Judea, 1984]. In the present work
the influence of a heuristic function is investigated for a stan-
dard MCT (see[Sutton, 1998]) and a 3D Mountain Agent
Task that is mentioned in[Taylor et al., 2008].
This task has been chosen as a benchmark problem to prove
possible advantages of the expansion of RL methods. The
idea for that expansion did arise during the investigation of a
navigation problem. However the primary goal has been to
verify the better performance for the benchmark problem.
Suitable types and methods of discretization play an impor-
tant role in the learning process. However the direct com-
parison of discretization methods is rarely described in the
literature. The correlation between the type and the method
of discretization of the state space is investigated as wellas
the influence of context information on the learning process.
Furthermore the impact and interaction of all mentioned as-
pects on the learning progress is examined. Numerous test
series are presented.
In RL it is searched for an optimum sequence of actions that
achieves the maximum expected profit (target function). Here
the target function is extended by a heuristic function. The
heuristic function gives a certain measurement for some state.
This can be regarded as a form of characterization of each
state or of an important part of a state. This mostly results in
a faster achievement of the target.
The term ”important part of a state” is explained by means of
a small example in the standard MCT. A state consists of the
two elements, position and speed(x, ẋ). The aim is to achieve
a certain position on the mountain (see the right picture in fig-
ure 1). The speed of the car at destination is not important.
The significant part of the state is the position of the car. The
distance is estimated analogously to the A* search algorithm.
It is the beeline distance between the position of the car and
the destination. It can be easily estimated without additional
knowledge about the properties of the environment.
In case of a possibly difficult landscape the information about
this distance can be helpful. The distance in the example cor-
responds to the introduced heuristic function.
Such an approximation is not always possible. But it is as-
sumed that for many problems which can be solved with RL
algorithms it is possible to define a heuristic function without
a huge effort. The advantage of the RL algorithms still re-
mains since a-priori knowledge about the environment is not

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

41

needed. The information can be integrated into the learning
process of the afore mentioned example in form of a heuristic
function already after the first arrival at the destination.Even
if the destination coordinate is not available right from the
start. Hence only scarce information is needed in the naviga-
tion task, quite comparable to standard MCT. One of the most
significant advantages of RL algorithms is still valid.

2 Application of Heuristic Function
The suggested extensions are based on the SARSA algorithm
(see equation below) but can be integrated without difficulties
into other approaches what is showed below.

Q(st, at)← Q(st, at)+α(rt +γQ(st+1, at+1)−Q(st, at))
(1)

wherest andst+1 are the state and the subsequent state re-
spectively. The symbolsat and at+1 stand for the action
and subsequent action which is chosen based on theǫ-greedy
strategy. The reward is denoted byrt. In each step theQ-
function is recalculated for the current pair(st, at). α, γ and
ǫ are constants used for learning.
An extended version of the SARSA-algorithm is used includ-
ing eligibility traces which require the determination of the
fourth learning constantλ.
In the first suggested method the context knowledge is em-
bedded in theQ-function. The heuristic function is regarded
as a continuous reward versus a discrete reward model in the
standard method.
In the second approach it is suggested to include context
knowledge in the decision making process that is the prepa-
ration of the policy and chooses the next action.

2.1 Extension of the Reward Model
The basic idea of the first approach is to learn the context
knowledge directly in theQ-function, according to equation:

Q(st, at)← Q(st, at) + α(rt+
+h(st) + γQ(st+1, at+1)−Q(st, at))

(2)

Similar ideas that use a constant reward function which is
adapted to the task are mentioned in[Papieroket al., 2008],
[Russell and Norvig, 2003]. In the present paper a thorough
analysis of the method is described.
In the classic version of RL little attention is paid to the re-
ward model. There is no tight continuous correlation between
states and rewards.
The reward model can be regarded as a discrete and in many
cases binary function. This function projects the stateS on a
finite number of subsets of the state space. The reward func-
tion maps each of the subsets to a constant valueri. It is
suggested to extend the reward function with a heuristic func-
tion. This heuristic function depends on the current state and
the destination state of the agent. The current state is given
depending on the task in a global or local (with respect to the
starting point) coordinate system. It is also important to keep
the correct balance between the discrete reward model and
the values provided by the heuristic function. A necessary
condition for the application of the heuristic function in the
Q-function is

−1 · |rmax| ≤ infs∈Sh(s) ≤ sups∈Sh(s) ≤ 1 · |rmax|

where rmax = maxi|ri|. The correctly defined heuristic
function will not affect the convergence of the algorithm. The
basis for that proposal is explained in detail in chapter 3.2.

2.2 Heuristic Function in the Action Selection
The second suggested approach uses the context information
in the action selection:

a∗ = maxa(Q(st, at) + h(st+1(st, at))) (3)

Thereby the values of the heuristic function are not learned
contrary to the first approach mentioned, since otherwise the
context knowledge would have a double influence on the
learning process.
The adequate relation between the heuristic function and the
learnedQ-function is ensured by the choice of the limiting
values of the heuristic function depending on the single re-
wards (see details in chapter 3.2).
If an action is not optimally chosen due to the influence of
the heuristic function, negative effects on the learning process
can occur. The proposal for the choice of the limits for the
heuristic function is for each possible policyπ(st) = at :=
maxaQ∗(st, a) and each state:

h(st)− h(st+1(st, at)) ≤ Q∗(st+1, at+1)−Q∗(st, at)

Then theQ-function converges to theoptimum functionQ∗,
although it is possible that more iteration steps are needed.
This method has its most influence in the beginning phase of
the learning process in which manyQ-values or parameters
in theQ-function are equal (mostly zero). These arguments
are confirmed by the experimental results shown below.

3 Heuristic Function
The use of a heuristic function has a solid basis. This has been
proven in the A* search algorithm. The application of context
knowledge is also borrowed from the field of evolutionary al-
gorithms. The heuristic function can be compared to a kind of
fitness function. The context knowledge is indirectly used in
learning of a structure. This structure is presented in formof a
neural network for example in[Kassahun, 2006] and[Siebel
et al., 2008].

3.1 Possible Definition of Heuristic Function
A possibility to show the heuristic function for the MCT is
the horizontal blue line on the right side in figure 1. A state
consists of the position and speed of the agent. The vertical
coordinate on the mountainf(x) is hidden in the model of
the gravity. This information is communicated to the agent in
form of a speed. Relevant however is only the information of
the horizontal position of the agent and its horizontal distance
to a certain position (target).
Alternatively, it is possible to define a heuristic function
which evaluates the distance between the target position inthe
2D world (xtarget, f(xtarget)) and the agent position in 2D
(x, f(x)). For example the state in the valley is priced worse
than the state at the opposite mountain. But in this case more
knowledge about the environment is necessary. For a nav-
igation problem (see left side in figure 1) the same context

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

42

Figure 1: Heuristic function for two different environments,
left: navigation problem, right: Mountain Car Task

knowledge as in the MCT can be used. The beeline is defined
in the following equation:

h(s, starget) = k ·
√

(starget − s)T · (starget − s) (4)

wherek is a parameter which should be chosen depending on
the standard reward model. The parameterk controls the in-
fluence of the heuristic function on the learning process.
This heuristic function can be seen as a form of potential
function. Each state contains a certain potential which in-
creases with decreasing distance to the destination fork < 0.
The heuristic function is a kind of distribution of the poten-
tial. For the computation of the heuristic function the same
information is needed as in the standard method: the current
position and the position of the destination which is derived
from the context knowledge. The current position is calcu-
lated from the action chain. If the starting point remains al-
ways the same, the current position in the coordinate system
of the target can be calculated by backward transformation of
the action chain.
Alternatively, if the starting point of the agent is always
changing, independent on the application of context informa-
tion, the approximate position in the coordinate system of the
global environment has to be known.

3.2 Discussion of Convergence Aspects

It has to be paid attention to some conditions when defining
the heuristic function. The function has to be bounded above
and below on the entire domain of the state space or sub state
space:c ≤ infs∈Sh(s) ≤ sups∈Sh(s) ≤ C.
The limits c, C should be in a certain relation to the single
values of the ordinary rewards(r1, . . . , rN) of the model. If
the valuesc andC are chosen too small|c| < |C| << |ri| for
all i, the effect of the heuristic function will not be noticeable
at all. In case of too large values a long time is necessary to
compensate the negative effects. Or in case|c| >> ri, it can
not be ensured that the heuristic function will converge to the
optimum value-function. Furthermore the heuristic function
shall not represent the relation of one state to the other (some
states are better than others) depending on the distance to the
target.
The influence of the heuristic function in the learning process
is investigated in the example 4.1 in[Sutton, 1998]. In the
following the positive and negative influence of the heuristic
function on the learning progress is described. In this ex-
ample the iterative policy evaluation is used in a small grid

world. Each learning step for the value-function is defined:

Vk+1(s)←
∑

a

π(s, a)
∑

s
′

Pa
s,s

′ [Ra
s,s

′ + γVk(s
′

)] (5)

This example has been chosen due to the simple environment,
the fast convergence of the method to the optimum policy and
a good visualization of the learning process. The number of
steps required to achieve the optimum policy by using a se-
quence of approximations of the state-value function for the
random policy (all actions equal) is a good measurement. In
the standard method the optimum policy is achieved after 3
iterations. With this measurement the comparison of the stan-
dard method with the method extended by a heuristic function
is made and the influence of the chosen limits for the heurisic
function is investigated.
A simple example is introduced to confirm the statement, that
wrongly chosen limits for the heuristic function results ina
worse convergence or even in a divergence of the algorithm.
The goal hereby is to confirm the suggested limits for the
heuristic function.
A 4 × 4 small grid world with 14 statesS = {1, . . . , 14} is
considered. In figure 2 the environment (left part), the heuris-
tic function (middle part) and the sequence of greedy policies
corresponding to the value function estimates (right part)are
shown. Suppose the agent follows the random policy in which
all actions are equally likely,π(s, a) = 1

4 for all a ∈ A(s).
The target states are shaded in the figure. In each state four ac-
tions are possible:A = {left, right, down, up}, which de-
terministically cause the corresponding state transitions. Ex-
ceptionally, the actions that would take the agent off the grid
will keep the state unchanged. An example for the probability
of the transition is:Pdown

12,12 = 1, Pleft
12,1 = 0, Pright

12,13 = 1. The
elementary reward isr = −1 on all transitions until the target
state is reached. Thus the reward function isRa

s,s
′ = r for all

statess, s
′

and actionsa.
This example is extended by the proposed heuristic function
which is defined in equation 4. The heuristic function is de-
fined depending on the parameterk. Thereby the impact of
the heuristic function on the learning process is investigated
systematically. Positive impacts (k < 0) and negative impacts
(k > 0) are determined. In case ofk > 0 the heuristic func-
tion is in a conflict to the target of the agent. The reason is that
according to the heuristic function the state with the larger
distance to the target is better than a state with a shorter dis-
tance in case of a positive distance. The first method, where

Figure 2: Example of the grid world and the context knowl-
edge depending on the parameter k, the right image is the
optimum policy; this is a greedy policy corresponding value
function after the 3rd iteration, which was obtained using a
standard method.

the heuristic function is learnt within the value function,is

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

43

based on the following consideration: According to the learn-
ing directive it is necessary that

Vk+1(s)
(5)
=

∑

a π(s, a)
∑

s
′ [Ra

s,s
′ + γVk(s

′

)]
π(s,a)= 1

4=
∑

s
′ [γVk(s

′

) + 1
4 · (R

left

s,s
′ + h(s, left) + Rright

s,s
′ +

+h(s, right) + Rup

s,s
′ + h(s, up) + Rdown

s,s
′ + h(s, down))]

(6)
for all s ∈ S. In order that the correct reward model can be
effective, the following shall be valid:

∑

a

h(s, a)
(6)
<

∑

a

|Ra
s,s

′ |. (7)

The largest absolute value of the heuristic function is in
the states12 and 3. Now the correlation between elemen-
tary rewards and the heuristic function for these states is de-
scribed in detail. The following shall be valid:(h(12, left)+
h(12, right) + h(12, up) + h(12, down)) =

= k ·(3+2+2+3)
(7)
< 4 · |−1| ⇒ k ≤ 4

10 . In other cases the
iterative policy method will never converge to the optimum
policy. The impact of an incorrectly defined heuristic func-
tion can not be compensated anymore by the correctly defined
standard reward model. In the first method a necessary condi-
tion for the definition of the heuristic function for the learning
of Q-function is[c;C] ⊂ [−maxi|ri|;maxi|ri|] and for the
learning of theV -function

∑

a |h(s, a)| <
∑

a |Ra
s,s

′ | for all
s ∈ S.
In figure 3 the number of iteration steps (to the achievement of
the optimum policy) is shown for the first method depending
on the parameterk. For eachk < 0 the impact of the context
knowledge is positive. Only one step is necessary to achieve
the optimum policy. On the contrary the standard method re-
quires 3 iteration steps. In case of0 < k < 0.4 a negative
impact of an incorrectly defined heuristic function can be ob-
served. In the second method the context knowledge is used

 1

 10

 100

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
te

ps
 u

nt
il

op
tim

um
 p

ol
ic

y

Parameter k

1. method: heuristic function in learning process
2. method: heuristic function in action selection

without heuristic function

Figure 3: Positive respectively negative impact of the heuris-
tic function and the number of steps until the optimum policy
for the first method and positive respectively negative impact
of the heuristic function in the action choice and the number
of steps until the optimum policy for the second method.

in the action choice. Hereby certain rules for the choice of

the limits for the heuristic function should be followed. As
an example the limit case for state 12 is considered in detail.
According to the learning rule it shall be valid:

V ∗(12(12, left)) + h(12) < V ∗(8(12, up)) + h(8). (8)

In this case the method can still achieve the optimum pol-
icy. That is valid, ifV ∗(12(12, left)) − V ∗(8(12, up)) =
(−22 − (−20)) < h(8) − h(12) := k · (2 − 3), thus
k < 2. The values of the heuristic function shall not ex-
ceed the values of the optimumV -function for each state.

h(s) − h(s
′

(s, agreedy))
(8)
< V ∗(s

′

(s, agreedy)) − V ∗(s) for
all s ∈ S andagreedy on the basis ofV ∗.
In figure 3 the impact of the correct (k < 0) or incorrect
(0 < k < 2) heuristic function on the learning process is
shown. In case ofk < 0 the positive impact of the context
knowledge can be observed in both suggested methods. Also
here only one learning step is required to achieve the optimum
policy.

4 Evaluation Strategy

The problem of a relatively slow convergence can be avoided
by using robot knowledge about the environment or through
a suitable discretization of the state space. The performance
of the convergence progress will be evaluated by checking it
against the performance of the method with standard config-
uration, MCT with standard discretization of the state space
(Tile Coding (TC)) and standard reward model.
Since the convergence process is dependent on the discretiza-
tion of the state space, different configurations have been
evaluated. In the presented paper Tile and Coarse Coding
have been chosen as discretization methods. In the case of
Coarse Coding (CC) the state space is represented by binary
features whose receptive fields overlap. Depending on the po-
sition in the state space one state can be represented by several
or one feature only. The respectiveQ-value is computed as
the average of the parameter vector coefficients, which corre-
spond to the currently involved binary features. In case of TC
the receptive fields of features do not overlap. Every part of
the state space is represented by one particular feature. For
the computation of the respectiveQ-value only one coeffi-
cient of the parameter vector is considered.
According to the previously specified MCT the two axes of
the state space correspond to the horizontal position and the
speed of the car. The discretization of the state space sig-
nificantly influences the performance of the learning process.
The discretizationm×n specifies the number of feature cen-
ters along the position and speed axes respectively. Since
the domain of the position values is greater than that of the
speed values the following discretization of the state space
was chosen to be21 × 5. To obtain some comparative value
the method was also tested with the discretization of9 × 9,
according to[Sutton, 1998].
In the results presented in the next section different abbrevia-
tions are used to indicate the examined method. The first two
letters define how the state space is descretized: CC - Coarse
Coding, TC - Tile Coding. The next two letters of the ab-
breviation specify the reward model: SR - Standard Reward

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

44

Model (see equation 1); HR - Heuristic Reward in theQ-
function (see equation 2); H - Heuristic function in the action
selection (see equation 3).
The proposed methods of how the context information can be
incorporated into the learning process have been evaluatedac-
cording to the type of the discretization and the discretization
of the state space. To obtain meaningful results the following
four criteria are used.
The first criterion is the learning progress. In case
of the standard mountain task it is defined as follows:
LearningProgressSMT := 1

30

∑30
i=1 s̄i, where s̄i is the

average number of steps in thei-th episode. For every
episode in total100 tests have been conducted. Although200
episodes have been realized, for the computation of the learn-
ing process value only the first30 episodes are considered.
As stated by[Sutton, 1998] in case of the standard MCT the
computed values do not change a lot after the30-th episode.
According to the definition smaller values indicate a better
learning process. These values are shown in the second col-
umn of the tables 1 and 2.
In case of the extended mountain agent task the value of the
learning progressLearningProgressEMA = 1

500

∑500
i=1 s̄i

is computed over all performed500 episodes. These values
are shown in table 3.
The second criterionis defined as the episode number, in
which the corresponding curve reaches the convergence range
of the curve for the first time. The convergence range begins
where the curve breaks through the thresholdt = s̄min · 1.1.
This criterion shows how fast the agent learns. The smaller
the value, the better is the performance. The values of this
criterion are shown in the third column of the corresponding
tables in the next section.
The third criterionis defined as the minimal average number
of steps,s̄min. In case of the standard MCT the values of
this criterion do not vary much when applied to the evaluated
methods. The variance of the computed values lies around
5%. Therefore the convergence range for the standard MCT
is defined depending on the value of this criterion. In case
of the 3D Mountain Agent Task the differences are larger, so
that the same convergence area is used. A smaller value of
this criterion indicates a better performance. The values of
this criterion are shown in the fourth column of the corre-
sponding tables in the next section.
The fourth criterionis the average varianceV . The value of
this criterion indicates the stability of the examined method.
Again the smaller the value, the better is the performance.
The results of this criterion are shown in the fifth column of
the tables in the next section.

5 Results

First the results for the standard MCT and afterwards the re-
sults for the extended 3D environment are presented and ex-
plained. The motivation for the extension of the task was the
assumption of a larger effect of the context information fora
more complex application. Basis for this assumption is the
higher significance of spatial information. Furthermore the
context information could help the agent since the number of
degrees of freedom of the agent is higher.

5.1 Standard Mountain Car Task
The standard MCT is taken from[Sutton, 1998] and is used
as a benchmark for the comparison of the learning process of
methods with context knowledge and different discretization.
According to that

xt+1 = bound(xt + ẋt+1)

ẋt+1 = bound(ẋt+0.001at−0.0025 sin(arctan(3 cos(3x))))

where at ∈ {−1.0, 0.0, 1.0} is the control and the cho-
sen action at the point of timet. (xt, ẋt) ∈ [−1.2; 0.6] ×
[−0.07; 0.07] are the position and speed of the agent at the
point of timet. The standard reward is−1 per time step. TC
has one tiling21 × 5 and9 × 9 respectively. In CC ellipses
are used for the discretization of the state space. The radii
of the ellipses (see equation 9) depend on the number of tiles
(21× 5 and9× 9) in each direction and on the co-domain:

σ◦ =

√
log410

2
· δ· with ◦ for x, ẋ (9)

whereδ◦ is the box width which depends on the co-domain
of each coordinate of the state space[◦mix; ◦max] and the
number of tilings(NumberTile) of each coordinate. There
are two different forms of tilings: 21 tiles for the posi-
tion part of the state and 5 tiles for the speed part. Thus
the tiling is named as21 × 5 tiling. The same number of
tiles for each part of the state space is denoted as9 × 9,
δ◦ = (◦max−◦min)/NumberTile. The parameters are equal
for each combination during the learning.ǫ = 0.0, α = 0.5,
λ = 0.9, γ = 1.0.
The method and type of discretization depend on each other.
The9×9 type of discretization in combination with CC shows
the best results for this task (see table 1 and table 2). The max-
imum (worst) value for the average number of steps is730 us-
ing a9× 9 discretization (see second column in table 1) and
is still lower (better) than the lowest (best) value945 using a
21 × 5 discretization (see table 2). Furthermore the same is
valid for the minimum achieved number of steps (see fourth
column in both tables). The reason is a non-optimum dis-
cretization of the speed range which has only 5 tiles. This can
be confirmed with a subsequent computation of the learning
process with a tiling of21×9 (see figure 4). Furthermore it is
also interesting that CC turned out to be the better discretiza-
tion method with the better9 × 9 discretization. But it can
not be concluded that CC is the better discretization method
in general, since it shows worse results than TC if used with
the worse discretization of21 × 5. The influence of con-
text knowledge on the convergence of the learning process
is investigated for all four combinations of the two different
methods and forms of discretization. The method with appli-
cation of the context knowledge in theQ-function can achieve
an improvement of up to28% depending on the environment
and discretization (see table 2, sixth column) in comparison
to the method with a standard reward model. Each run shows
an improvement of the convergence. Thus if the discretiza-
tion is not optimally chosen a significant improvement due to
application of context knowledge can be observed (see figure
5). Furthermore a stabilizing effect can be identified. How-
ever an enhancement regarding the learning progress due to

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

45

Table 1: Discretization with9× 9 tiling: Comparative learn-
ing progress values for the 6 methods, standard reward model
as benchmark for the standard MCT, Sixth column: Improve-
ment of the learning progress in comparison to the standard
reward model using the same discretization method

Method Learn Episode Min Vari- Impro-
progress no. steps ance vement

CC-SR 583 125 139 583 -
CC-HR 540 125 143 395 7%
CC-H 561 126 141 415 4%
TC-SR 709 87 186 595 -
TC-HR 681 75 190 516 4%
TC-H 730 81 182 565 -3%

Table 2: Discretization with21 × 5 tiling: Comparative val-
ues for the shown methods, standard reward model as bench-
mark for the standard MCT, Sixth column: Improvement of
the learning progress in comparison to the standard reward
model using the same discretization method

Method Learn Episode Min Vari- Impro-
progress no. steps ance vement

CC-SR 2290 144 257 3292 -
CC-HR 1657 76 254 2390 28%
CC-H 2180 130 259 3230 5%
TC-SR 1019 52 252 1123 -
TC-HR 945 72 241 955 7%
TC-H 1011 53 239 1151 1%

application of the heuristic function in the action selection is
not clear by evidence. A decrease of the learning progress
of up to5% as well as an increase of up to3% is measured
(see table 1 and 2). But regarding the episode number firstly
entering into the convergence range the method is not worse
than the other two.
The difference in the minimum achieved number of steps
(forth column in table 2) as average of 100 runs is marginal
within each combination.
The average variance is similar for each method but is always
lower for the method with application of context knowledge.
This indicates a better stability (see table 1 and table 2, fifth
column). The relation of the variance and the number of out-
liers in the learning process is shown in figure 6.
Learning curves for the standard MCT with different dis-
cretization models and a9 × 9 tiling are shown in figure 7.

5.2 3D Mountain Agent Task
The 3D Mountain Agent Task is generated by expansion
of the standard MCT with an additional position coordinate
and a speed in this coordinate. The task is similar to the
one which is described in[Taylor et al., 2008]. The do-
main for x andy coordinates is expanded to create several
mountains. The agent can now move in a 3D space. The
third coordinate is determined by the landscape. The po-
sition is two-dimensional and consists of two coordinates:
(x, y) ∈ [−1.2 : 4.8]× [−1.2 : 4.8]. The velocity is also two-
dimensional and consists of two speeds:(ẋ, ẏ) ∈ [−0.07 :

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200

S
te

ps
 p

er
 E

pi
so

de

Episodes

Mountain Car Problem, Coarse Coding

with heuristic in action selection, 21x5
with heuristic in action selection, 21x9

Figure 4: Comparison of the learning curve for a discretiza-
tion of 21× 5 and21× 9

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200

S
te

ps
 p

er
 E

pi
so

de

Episodes

Mountain Car Problem, Tiling 21x5

CC, with heuristic in action selection
CC, with heuristic in Q-Function

CC, standard

Figure 5: Untypical learning curves of the different methods
(heuristic action selection, heuristic inQ-function, without
heuristic) with21× 5 CC

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180

S
te

ps
 p

er
 E

pi
so

de

Episodes

Mountain Car Problem, 9x9 Tiling

CC, with heuristic in Q-Function
variance

Figure 6: Relation between the learning curve and the vari-
ance

0.07] × [−0.07 : 0.07]. Hence the dimension of the state
space is four(x, ẋ, y, ẏ). The starting point is in the coor-
dinatesxstart = −0.523, ystart = −0.523. The target is

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

46

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

S
te

ps
 p

er
 E

pi
so

de

Episodes

Mountain Car Problem, 9x9 Tiling

TC, with heuristic in action selection
TC, with heuristic in Q-Function

TC, standard

Figure 7: Learning curves of the different methods (heuris-
tic action selectio, heuristic inQ-function, without heuristic)
with 9× 9 TC

achieved, if both coordinates arex > 4.7; y > 4.7.
The control is also a two-dimensional vector. Each ac-
tion consists of ax and y part, (ax, ay) ∈ {(± −
1, 0); (0,±1); (± 1√

2
,± 1√

2
); (0, 0)}. There exist nine actions

(on the unit circle). The new state is calculated with the fol-
lowing formulas:

xt+1 = bound(xt + ẋt), yt+1 = bound(yt + ẏt)

ẋt+1 = bound(ẋt + 0.001 · axt
− cos(3xt) · 0.0025)

ẏt+1 = bound(ẏt + 0.001 · ayt
− cos(3yt) · 0.0025)

In table 3 more results are shown for the extended task.
The results confirm an improvement with application of the
heuristic rewards in theQ-function of up to 8 % (see table
3). Furthermore the minimum average step number is clearly
lower (up to26%) for the method with application of the
context knowledge in theQ-function than for the standard
method (see seventh column in table 3).
In figure 9 four different learning trajectories are shown (24th,
48th, 72nd and 98th episode). These trajectories were gener-
ated during the learning processes with application of the CC
discretization and the heuristic reward function. In all four
example episodes the agent needs the first300 steps in its
policy to leave the first valley. Already after the 24th episode
(see figure 9(a)) the approach using context knowledge has a
good solution to achieve the target. Although the agent needs
a low step number to arrive at the destination the chosen tra-
jectory is very sensitive to mistakes and inaccuracies. The
agent moves over the hillside. Such states are relatively insta-
ble. Due to a wrong move the agent could fall into the next
valley which is like a trap. After the 48th episode the agent
chooses a stable trajectory (see figure 9(b)). The decision to
move at the limit of the environment seems to be logical. The
agent is supported by the boundaries of its world in the final
part of the green trajectory. A new state is always converted
into a valid state. The action set is bounded by this range
since the actions which would bring the agent outside the en-
vironment are ignored. Hence the agent can make less wrong
at the boundary. This can also be observed in the further de-
velopment of the learning process (see figure 9(c)). In the

96th episode the agent moves on the mountain ridge which is
more stable (see figure 9(d)).
The learning curves of the best learning methods for each dis-
cretization method are plotted in figure 8. A discretization
with CC has a clear advantage to TC. Both best methods are
using the context knowledge in theQ-function.

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500

S
te

ps
 p

er
 E

pi
so

de

Episodes

CC, with heuristic in Q-Function
TC, with heuristic in Q-Function

Figure 8: Learning curves for the 3D Mountain Agent Task

Table 3: Comparative values for the suggested methods and
the benchmark method with TC for 3D Mountain Agent Task.
Improvement A: Learning progress using heuristic in compar-
ison to the standard reward model using the same discretiza-
tion method. Improvement B: Minimum number of steps us-
ing heuristic in comparison to the standard reward model us-
ing the same discretization method.

Method Learn Epis. Min Vari- Impr. Impr.
prog. no. steps ance A B

CC-SR 1413 101 821 1324 - -
CC-HR 1297 111 605 1209 8% 26%
CC-H 1413 134 838 1352 0% -2%
TC-SR 2144 113 1343 2066 - -
TC-HR 2006 130 1003 1933 6% 25%
TC-H 2117 126 1244 2008 1% 7%

6 Discussion
Two methods are proposed which use context knowledge and
integrate it into the learning process. The result is an ac-
celeration of the learning convergence in comparison to the
standard method, which does not use the context knowledge.
The advantages of the application of the heuristic functionare
proven for the standard MCT as well as for an extended 3D
Mountain Agent Task. For the 3D Mountain Agent Task also
the minimum number of steps for the best found solution is
significantly lower which results in a shorter way to the target.
Furthermore the used method and type for the discretization
of the state space have a high impact on the learning process.
Learning is faster using a discretization with9 × 9 tiles than
with 21× 5 tiles for the standard MCT. The performed inves-
tigation on two example tasks shows promising results. The

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

47

-1
 0

 1
 2

 3
 4

-1
 0

 1
 2

 3
 4

 5

-2
-1
 0
 1
 2

f(x,y)
trajectory

x

y

(a) 24th Episode

-1
 0

 1
 2

 3
 4

-1
 0

 1
 2

 3
 4

 5

-2
-1
 0
 1
 2

f(x,y)
trajectory

x

y

(b) 48th Episode

-1
 0

 1
 2

 3
 4

-1
 0

 1
 2

 3
 4

 5

-2
-1
 0
 1
 2

f(x,y)
trajectory

x

y

(c) 72th Episode

-1
 0

 1
 2

 3
 4

-1
 0

 1
 2

 3
 4

 5

-2
-1
 0
 1
 2

f(x,y)
trajectory

x

y

(d) 96th Episode

Figure 9: Development of the learning process, trajectories in the 24th, 48th, 72th and 96th episode, heuristic inQ-function,
3D Mountain Car Problem,21× 5× 21× 5 Tiling, CC.

application of heuristic functions should be further investi-
gated for other agent problems like the navigation problem in
real environments.
In the present work only an example for a heuristic function
is investigated. The application of other context knowledge
from the environment in form of a heuristic function is possi-
ble. Such context knowledge could be for example the infor-
mation if the agent is moving upwards or downwards the hill.
Another heuristic function could evaluate if the target is on
the right or the left side of the agent. This and other possible
heuristic functions will be investigated in future.

References
[Bertsekas, 1995] Dimitri P. Bertsekas.Dynamic Program-

ming and Optimal Control. Athena Scientific, 1995.

[Judea, 1984] Pearl Judea. Heuristics: intelligent search
strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[Kassahun, 2006] Yohannes Kassahun. Evolutionary learn-
ing of neural structures for visuo-motor control, 2006.

[Papieroket al., 2008] S. Papierok, A. Noglik, and J. Pauli.
Application of Reinforcement Learning in a Real Envi-
ronment using RBF Networks. InProceedings of the In-
ternational Workshop on Evolutionary Learning for Au-
tonomous Robot Systems, pages 17–22, Juli 2008.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition, 2003.

[Siebelet al., 2008] Nils T. Siebel, Gerald Sommer, and
Yohannes Kassahun. Evolutionary learning of neural
structures for visuo-motor control. InComputational In-
telligence in Medical Informatics, pages 93–115. Springer,
2008.

[Sutton, 1998] Richard S. Sutton.Reinforcement Learning:
An Introduction. The MIT Press, Cambridge, Massa-
chusetts, 1998.

[Taylor et al., 2008] Matthew E. Taylor, Nicholas K. Jong,
and Peter Stone. Transferring instances for model-based
reinforcement learning. InMachine Learning and Knowl-
edge Discovery in Databases, volume 5212 ofLecture
Notes in Artificial Intelligence, pages 488–505, September
2008.

[Watkins and Dayan, 1992] Christopher J. C. H. Watkins and
Peter Dayan. Q-learning2.Machine Learning, 8(3-4):279–
292, 1992.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

48

On the relation between Ant Colony Optimization and Heuristically Accelerated
Reinforcement Learning ∗

Reinaldo A. C. Bianchi
Centro Universitário FEI

São Bernardo doCampo, Brazil .
rbianchi@fei.edu.br

Carlos H. C. Ribeiro
Technological Instituteof Aeronautics

Computer ScienceDivision
São Josédos Campos, Brazil .

carlos@comp.ita.br

Anna H. R. Costa
EscolaPolit écnica

University of São Paulo
São Paulo, Brazil .

anna.reali@poli .usp.br

Abstract
This paper has two main goals: the first is to pro-
pose anew classof Heuristically Accelerated Rein-
forcement Learning algorithms (HARL), the Dis-
tributed HARLs, describing one algorithm of this
class, the Heuristically Accelerated Distributed Q-
Learning(HADQL); and thesecondis to show that
Ant ColonyOptimization(ACO) algorithmscan be
seen asinstancesof DistributedHARLsalgorithms.
In particular, this paper shows that the Ant Colony
System (ACS) algorithm can be interpreted as a
particular case of the HADQL algorithm. This in-
terpretation is very attractive, as many of the con-
clusions obtained for RL algorithms remain valid
for Distributed HARL algorithms, such astheguar-
antee of convergence to equili brium. In order
to better evaluate the proposal, we compared the
performances of the Distributed Q-Learning, the
HADQL and the ACS algorithms in the Traveling
Salesman Problem domain. The results show that
HADQL and the ACS algorithm have similar per-
formances, as it would be expected from the hy-
pothesis that they are, in fact, instancesof thesame
classof algorithms.

1 Introduction
In the last few years several researchers noticed the similar-
ity between Ant ColonyOptimization (ACO) and Reinforce-
ment Learning (RL) [Stützle and Dorigo, 2002; Dorigo and
Blum, 2005]. Despitehaving different inspirational sources–
ACO is inspired in the foraging behavior of real ants, while
RL is based onOptimal Control Theory –, they have several
characteristics in common, such as the use of Markov Deci-
sion Processas a way to formulate the problem and provide
convergence proofs for the algorithms [Stützle and Dorigo,
2002], and the similarity between the action-value function
in RL and thepheromonein ACO, among other aspects.

The major differences between ACO and RL are that the
first is a distributed approach, with several agents working

∗The authors would like to thanks FAPESP for supporting
this project. Reinaldo Bianchi also acknowledge the support of
the CNPq (Grant No. 201591/2007-3) and FAPESP (Grant No.
2009/01610-1).

to find a solution to a given problem and that ACO makes
use of a heuristic evaluation of which movesare better. This
last difference– the use of heuristics by the ACO – made it
difficult to completely model an ACO algorithm asaRL one.

Now thesedifferencescan be addressed by usingarecently
proposed technique, theHeuristically Accelerated Reinforce-
ment Learning(HARL) [Bianchi et al., 2008]. Thistechnique
was proposed to speed up RL methods by making use of a
conveniently chosen heuristic function, which is used for se-
lecting appropriate actions to perform in order to guide ex-
ploration during the learning process. HARL techniques are
based onfirm theoretical foundations, allowing many of the
conclusionsobtainedfor RL to remain valid, suchastheguar-
anteeof convergenceto an optimal solution in the limit.

This paper presents two contributions: the first one is the
proposal of a new classof HARL algorithms, the Distributed
HARL (HADRL), and the description and implementation
of one algorithm of this class, the Heuristically Accelerated
Distributed Q-Learning (HADQL), which extends the Dis-
tributed Q-learning (DQL) algorithm proposed by Mariano
and Morales [2001]. The second contribution is a demon-
stration that ACO algorithmscan beseen as instancesof Dis-
tributed HARLs algorithms. In particular, the paper shows
that the Ant Colony System (ACS) algorithm [Dorigo and
Gambardella, 1997] can be consideredaparticular caseof the
HADQL algorithm. This interpretation is very attractive, as
many of the conclusions obtained for RL algorithms remain
valid for Distributed HARL algorithms, such astheguarantee
of convergenceto equili brium.

The domain studied herein is that of the Traveling Sales-
man Problem, which is used as a benchmark for testing the
algorithmswith the goal of evaluatingHADQL and compar-
ingit with theDQL andtheACS. Nevertheless, thetechnique
proposed in thiswork isdomain independent.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviewstheRL problem andtheDistributed Q–
Learningalgorithm, whileSection 3 describestheHAQL ap-
proach and its solutions. Section 4showshow to incorporate
heuristics in theDQL algorithm. Section 5 presents theACO
and the ACS algorithm, and Section 6 shows how ACS can
be seen as a HARL algorithm. Section 7 presents the ex-
perimentsperformed andshowsthe resultsobtained. Finally,
Section 8 providesour conclusionsand outlines futurework.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

49

2 Reinforcement Learning and the DQL
algorithm

Reinforcement Learning (RL) algorithms have been applied
successfully to theon-linelearning of optimal control policies
in Markov Decision Processes (MDPs). In RL, this policy is
learned throughtrial-and-error interactions of the agent with
itsenvironment: oneach interactionstep the agent senses the
current states of the environment, choosesan actiona to per-
form, executes this action, altering the state s of the environ-
ment, and receives a scalar reinforcement signal r (a reward
or penalty).

The RL problem can be formulated as a discrete time,
finite state, finite action Markov Decision Process (MDP).
The learning environment can be modeled by a 4-tuple
〈S,A, T ,R〉, where:

• S: isa finite set of states.

• A: isa finiteset of actions that the agent can perform.

• T : S×A → Π(S): isastate transitionfunction, where
Π(S) isaprobabilit y distribution overS. T (s, a, s′) rep-
resents the probabilit y of moving from state s to s′ by
performingactiona.

• R : S ×A → ℜ: isa scalar reward function.

The goal of the agent in a RL problem is to learn an op-
timal policy π∗ : S → A that maps the current state s into
the most desirable action a to be performed in s. One strat-
egy to learn the optimal policy π∗ is to allow the agent to
learn the evaluation function Q : S × A → R. Each action
value Q(s, a) value represents the expected cost incurred by
the agent when taking action a at state s and following an
optimal policy thereafter.

TheQ–learningalgorithm [Watkins, 1989] is a well -know
RL technique that uses a strategy to learn an optimal policy
π∗ via learning of the action values. It iteratively approxi-
mates Q, provided the system can be modeled as an MDP,
the reinforcement function is bounded, and actions are cho-
sen so that every state-action pair isvisited an infinitenumber
of times. TheQ learning updaterule is:

Q̂(s, a)← Q̂(s, a) + α
[

r + γ max
a′

Q̂(s′, a′)− Q̂(s, a)
]

,

(1)
where s is the current state; a is the action performed in s; r
is the reward received; s′ is the new state; γ is the discount
factor (0 ≤ γ < 1); andα, is the learningrate.

In the caseof theuseof theQ–Learningalgorithm to solve
theTSP, thestates correspondsto the city in which the agent
is at a given moment, and the set of actions that an agent
can execute corresponds to the set of cities in the problem,
excludingthe current city s.

To select an action to be executed, the Q–Learning algo-
rithm usually considersan ǫ−Greedy strategy:

π(s) =

{

argmaxa Q̂(s, a) if q ≤ p,

arandom otherwise
(2)

where q is a random value uniformly distributed over [0, 1]
and p (0 ≤ p ≤ 1) is a parameter that defines the explo-
ration/exploitation tradeoff : the larger p, the smaller is the

Table1: TheDQL algorithm [MarianoandMorales, 2001].

InitializeQ(s, a) arbitrarily
Repeat (for n episodes):

Repeat (for each agent i in the set of m agents):
Initializes, copyQ(s, a) to Qci(s, a)
Repeat (for each step of the episode):

Select an actiona, observer, s′.
Update theQci(s, a) values.
s← s′.

Until s is terminal.
Evaluate them solutions.
Assign reward to thebest solution found.
Update theglobal Q(s, a).

Until a terminationcriterion ismet.

probabilit y of executing a random exploratory action, and
arandom isan actionrandomly chosen amongthose available
in state st.

Several authors have proposed distributed approaches to
RL, and various forms of distributed Q–Learning were de-
veloped [Pendrith, 2000; Lauer andRiedmill er, 2000; Gu and
Maddox, 1996; Mariano and Morales, 2001]. One of these
is the Distributed Q-learning algorithm (DQL) proposed by
MarianoandMorales[2001], which isageneralization of the
Q-learningalgorithm where, instead of asingle agent, several
independent agentsare used to learn asinglepolicy.

In Mariano and Morales’ DQL, in addition to the global
Q(s, a) function, each agent i keeps a temporary copy of
Q, the Qci(s, a) that is used to decide which action to per-
form, following an ǫ-greedy policy. Every time an action is
performed, Qci(s, a) is updated accordingto the Q-Learning
updaterule (Equation 1).

The DQL agents explore different options in a common
environment and when all agents have completed a solution,
their solutions are evaluated, and the global Q(s, a) table is
updated: the best solution (the shortest route made by all
agents in the TSP) isupdated using Equation(1), and receiv-
inga reward r. TheDQL algorithm ispresented in table1.

As DQL does not change the update rules of the Q–
Learning algorithm, the same proofs of convergence used
for the standard Q–Learning remains valid for it [Mariano
and Morales, 2001]. Different Distributed Q-Learning al-
gorithms, proposed by other authors, also hold convergence
proofs [Lauer andRiedmill er, 2000].

3 Heuristic Accelerated Reinforcement
Learning

Formally, a Heuristically Accelerated Reinforcement Learn-
ing(HARL) algorithm isaway to solve aMDPproblem with
explicit use of a heuristic functionH : S × A → ℜ for in-
fluencingthe choiceof actionsby thelearningagent. H(s, a)
definestheheuristic that indicatestheimportanceof perform-
ing the action a when visiting state s. The heuristic function
is strongly associated with the policy: every heuristic indi-
cates that an actionmust be taken regardlessof others.

The heuristic function is an action policy modifier which
does not interfere with the standard bootstrap-like update

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

50

mechanism of RL algorithms. A possible strategy for action
choiceis an ǫ− greedy mechanism where aheuristic mech-
anism formalized asa functionH(s, a) is considered, thus:

π(s) =

{

argmaxa

[

F(s, a) ⊲⊳ ξH(s, a)β
]

if q ≤ p,

arandom otherwise
(3)

where:

• F : S × A → ℜ is an estimate of a value func-
tion that defines the expected cumulative reward. If
F(s, a) ≡ Q̂(s, a) we have an algorithm similar to stan-
dard Q–Learning.

• H : S × A → ℜ is the heuristic function that plays a
rolein the actionchoice. H(s, a) definestheimportance
of executingactions in state s.

• ⊲⊳ is a function that operates on real numbers and pro-
ducesavaluefrom an ordered set which supportsamax-
imization operation.

• ξ andβ are design parameters that control the influence
of theheuristic function.

• q isaparameter that definesthe exploration/exploitation
tradeoff .

• arandom is an action randomly chosen among those
available in state s.

In general, the value of H(s, a) must be larger than the
variationamongthevaluesof F(sa) for agiven s ∈ S, so that
it can influencethe action choice. On the other hand, it must
be as small aspossible in order to minimizethe error. If ⊲⊳ is
a sum andξ = β = 1, a heuristic can bedefined as:

H(s, a) =

{

maxa [F(s, a)]− F(s, a) + η if a = πH(s),

0 otherwise.
(4)

where η is a small value and πH(s) is a heuristic obtained
usingan appropriatemethod.

For instance, let [1.0 1.1 1.2 0.9] be the values of F(s, a)
for four possible actions [a1 a2 a3 a4] for a given state st. If
the desired action is the first one (a1), we can use η = 0.01,
resulting in H(s, a1) = 0.21 and zero for the other actions
(seeFigure1). Theheuristic can bedefinedsimilarly for other
definitionsof ⊲⊳ and valuesof ξ andβ.

Convergenceof the first HARL algorithm — Heuristically
Accelerated Q–Learning (HAQL) — is presented in Bianchi
et al. [2008], together with the definition of an upper bound
for the error in the estimation of Q. The same authors inves-
tigated the use of HARL in multiagent domain, proposing a
multiagent HARL algorithm – the Heuristically Accelerated
Minimax-Q [Bianchi et al., 2007] – andtesting it in asimpli -
fied simulator for the robot soccer domain.

4 The HADQL algorithm
The Heuristically Accelerated Distributed Q–Learning algo-
rithm is a HARL algorithm that extends the DQL algorithm
by making use of an heuristic function in the action choice

F(s,a2) = 1.1
H(s,a2) = 0

F(s,a3) = 1.2
H(s,a3) = 0

F(s,a1) = 1.0
H(s,a1) = 0.21

F(s,a4) = 0.9
H(s,a4) = 0

ss t t+1

Figure 1: Suppose astate st and a desired state st+1. The
value of H(st, a1) for the action that leads to st+1 is 0.21,
andzero for theother actions.

ruledefined in Equation(3), whereF = Q, the⊲⊳ operator is
thesum andβ = 1:

π(s) =

{

argmaxa

[

Q̂(s, a) + ξH(s, a)
]

if q ≤ p,

arandom otherwise,
(5)

where all variablesare defined as in Equation (3). The value
of theheuristic can bedefined by instantiatingEquation 4:

H(s, a) =

{

max
i

Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(6)

where η is a small real value (usually 1) and πH(s) is the
actionsuggested by theheuristic policy.

As the heuristic is used only in the choiceof the action to
be taken, the DQL operation is not modified (i.e., updates of
the function Q are as in Q–learning), and it thus allows that
many of the conclusions obtained for DQL remain valid for
HADQL. TheHADQL algorithm ispresented in table2.

Theorem 1. Consider a HADQL system learning in a deter-
ministic MDP, with finite sets of states and actions, bounded
rewards (∃c ∈ ℜ; (∀s, a), |r(s, a)| < c), discount factor γ
such that 0 ≤ γ < 1 and where the values used on the
heuristic function arebounded by (∀s, a) hmin ≤ H(s, a) ≤

hmax. For this algorithm, the Q̂ values will converge to Q∗,
with probabilit y one uniformly over all the states s ∈ S, if
each state-action pair is visited infinitely often (obeystheQ–
learning infinite visitationcondition).

Proof. In HADQL, theupdateof thevalue functionapproxi-
mation doesnot dependexplicitly on the value of the heuris-
tic. The necessary conditions for the convergence of DQL
that could be affected with the use of the heuristic algorithm

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

51

Table2: TheHADQL algorithm

InitializeQ(s, a) andH(s, a) arbitrarily
Repeat (for n episodes):

Repeat (for each agent i in the set of m agents):
Initializes, copyQ(s, a) to Qci(s, a)
Repeat (for each step of the episode):

Compute the valueof H(s, a) usingEq. 6.
Select an actiona usingEq. 5.
Observer, s′.
Update theQci(s, a) values.
s← s′.

Until s is terminal.
Evaluate them solutions.
Assign reward to thebest solution found.
Update theglobal Q(s, a).

Until a terminationcriterion ismet.

HADQL are the ones that depend on the choice of the ac-
tion. Of the conditions presented in Littman and Szepesvári
[1996]; Mitchell [1997], theonly onethat dependson the ac-
tion choice is the necessity of infinite visitation to each pair
state-action. As equation 5considers an explorationstrategy
ǫ– greedy regardlessof the fact that the value function is in-
fluenced by the heuristic, the infinite visitation condition is
guaranteed and the algorithm converges.

The condition of infinitevisitation of each state-action pair
can be considered valid in practice also by using visitation
strategies such as Boltzmann exploration [Kaelbling et al.,
1996], intercalating steps where the algorithm makes alter-
nateuseof theheuristic andexploration, or usingtheheuristic
duringaperiod of time, smaller than the total learningtime.

The domain studied in this work is that of the Traveling
Salesman Problem (TSP), which consists in, given a number
n of cities C = c1, c2, . . . cn and the distance di,j between
them, to find the shortest route that visits each city in C at
least once and then returnsto the startingcity.

To compute an heuristic function for the TSPproblem, we
were inspired by theNearest Neighbor Heuristic used in sev-
eral works [Russell and Norvig, 1995]. This heuristic states
that the agent starts at some city and from there it visits the
nearest city that wasnot visited so far. Using this rule, asim-
ple heuristic that indicates to which city an agent must move
can be defined as the inverseof the distancedi,j between the
cities i and j timesa constant η:

H(s, a) =
η

di,j

, (7)

where s is the current state (i.e., the current city ci) and a is
the action that takes the agent to the city cj .

Theproblem with thisheuristic is that it doesnot take into
account that the agentsmust not visit two timesthesame city.
Therefore, the actionchosen astheoneto bedone(theheuris-
tic policy) is the one that moves the agent to the nearest city
that was not visited yet. To put this idea in the framework
of equation 6, and taking into account the cities that were al-
ready visited, theheuristic function becomes:

H(s, a) =

{

max
x

Q̂(s, x)− Q̂(s, a) + η if δi,j = min
y

δi,y

0 otherwise.
(8)

where η is a small real value (usually 1), a is the action that
takes the agent from city i to j andδi,j thedistancesbetween
the city ci and the cities that have not been visited so far,
defined by:

δi,j =

{

di,j if j hasnot been visited
∞ otherwise.

(9)

Finally, the agents receive only negative reinforcements,
defined asminus thedistancebetween the cities, r = −di,j .

5 The Ant Colony System Algorithm
Based on the social insect metaphor for solving problems,
the use of Ant Colony Optimization (ACO) for solving sev-
eral kinds of problems has attracted an increasing attention
of the AI community [Bonabeau et al., 1999, 2000; Dorigo
and Blum, 2005]. The Ant ColonySystem (ACS) is an ACO
algorithm proposed by Dorigo and Gambardella [1997] for
combinatorial optimization based on the observation of ant
coloniesbehavior.

ACS has been applied to various combinatorial optimiza-
tion problems like the symmetric and Asymmetric Traveling
Salesman Problems (TSP and ATSP respectively), and the
quadratic assignment problem.

ACSrepresentstheusefulnessof movingto the city s when
in city r in τ(r, s), called pheromone, which isapositivereal
value associated to the edge (r, s) in a graph. There is also
a heuristic η(r, s) associated to the edge (r, s). It represents
an heuristic evaluation of which movesarebetter. In theTSP,
η(r, s) can betheinverseof thedistanceδ from r to s, δ(r, s).

An agent k positioned in city r moves to city s using the
following rule, called state transition rule [Dorigo and Gam-
bardella, 1997]:

s =

{

arg max
u∈Jk(r)

τ(r, u) · η(r, u)β if q ≤ q0

S otherwise
(10)

where:
• β is a parameter which weights the relative importance

of the learned pheromone andtheheuristic distanceval-
ues (β > 0).

• Jk(r) is the list of cities still t o be visited by the ant k,
where r is the current city. This list is used to constrain
agents to visit citiesonly once.

• q isaparameter that definesthe exploitation/exploration
rate.

• S is a random city from the list of citiesJk(r).

Ants in ACS update thevaluesof τ(r, s) in two situations:
in the local updatestep (applied when antsvisit edges) andin
theglobal updatestep (applied when antscomplete the tour).

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

52

Table3: TheACSalgorithm (in theTSP Problem).

Initializethepheromonetable, the antsand the list of cities.
Repeat (for n episodes):

Repeat (for each ant i in theset of m ants):
Put each ant at astartingcity.
Repeat (for each step of the episode):

Chose next city usingEquation(10).
Update list Jk of yet to bevisited cities for ant k.
Apply local updateusingEquation(11).

Until (antshave a complete tour).
Apply global updateusingEquation(12).

TheACS local updaterule is:

τ(r, s)← (1 − ρ) · τ(r, s) + ρ ·∆τ(r, s) (11)

where 0 < ρ < 1 is a the learning rate, and ∆τ(r, s) =
γ ·maxz∈Jk(s) τ(s, z).

TheACS global updaterule is:

τ(r, s)← (1− α) · τ(r, s) + α ·∆τ(r, s) (12)

where α is the pheromone decay parameter, and ∆τ(r, s) is
theinverseof thelength of thebest tour, given only to thetour
doneby thebest agent – only the edgesbelongingto thebest
tour will receivemorepheromones.

Thus, the pheromone updating formulas aims at placing a
greater amount of pheromoneontheshortest tours, achieving
this by simulating the addition of new pheromone deposited
by ants and evaporation. The ACS algorithm is presented in
table3.

6 ACS as HARL
Now that the HADQL algorithm is defined, we proceed in
explaining how ACS can beseen asan HARL algorithm:

• The Pheromone is the ACS counterpart of DQL Q-
values, where the city r in which the ant is at a defined
moment correspondsto thestate s, and the city s the ant
should moveto, correspondsto the actiona to be taken:
τ(r, s) = Q̂(s, a);

• The heuristic η(r, u) corresponds to the heuristic func-
tionH(s, a);

• The state transition rule (Eq. 10) is the same as the one
used by HARL algorithms (Eq. 3), with the ⊲⊳ operator
being the multiplication, ξ = 1 and β having the same
function;

• Thelist Jk(r) of cities still t o bevisited bythe ant, which
causes problems for the convergenceproof of ACS (be-
cause it cannot be defined as a MDP - seeKoenig and
Simmons [1996]), can be encoded as an heuristic, as in
Equation 8;

• The local update step (Eq. 11) of τ(r, s) is made in the
sameway astheupdating of Qc in DQL (without giving
a reinforcement),

• The global update step (Eq. 12) in ACS corresponds to
attributing the reinforcement to the best solution, which

ismadein theupdating of theglobal Q of DQL, with the
pheromonedecay parameter α being equal to the learn-
ing factor and ∆τ(r, s) corresponding to a delayed re-
ward.

ACS and HADQL as proposed in this work differ by the
fact that HADQL partial updates are performed over copies
of the Q-table, and that HADQL updates the best solution at
the same time it provides the reinforcement (that is, the last
step of HADQL corresponds to executing both a local and a
global ACS update at the same time). According to Mariano
andMorales [2001], thisavoidsmultipleupdatesof thesame
Q-table, resulting in updating only relevant solutions and al-
lowing faster convergence.

Finally, by modeling ACS as a HARL, it is possible to
show that ACS also convergesto equili brium in the limit.

Theorem 2. Consider ACS in a deterministic MDP, with fi-
nite sets of states and actions (a finite number of cities to
visit), bounded rewards (∃c ∈ ℜ; (∀r, s), |∆τ(r, s)| < c),
learning rate ρ and pheromone decay parameter α with val-
uesbetween 0 and1 andwhere the valuesused ontheheuris-
tic are bounded by (∀r, s) ηmin ≤ η(r, s) ≤ ηmax. For this
algorithm, the τ̂ values will converge to τ∗, with probabilit y
one uniformly over all the states s ∈ S, if each pair (r, s) is
visited infinitely often.

Proof. Theonly differencebetween ACSandHADQL isthat
ACS executes more local updates. But the effect of having
morelocal updatesis that thepair (r, s) isvisited moreoften,
assigning rewards more frequently. As HADQL converges,
without executingthelocal updates, ACSalso converges.

Other ways by which it could be shown that ACS con-
verges is by modeling it as a HADQL that includes coop-
eration among the agents, such as one based on Lauer and
Riedmill er [2000], or by using a DQL that only posses one
Q-table, such as in Pendrith [2000].

7 Experiments in the TSP domain
In order to evaluate the performance of the HADQL algo-
rithm and its relation with ACS, this section compares the
performancesof these algorithmswhilesolvingaset of TSPs.
TheDistributed Q-learning(DQL) algorithm isalso included
in this comparison, for the sake of comparing the new algo-
rithm with a traditional RL one.

These tests were performed using a standardized dataset,
theTSPLIB [Reinelt, 1995]. This library of problems, which
was used as benchmark by both Dorigo and Gambardella
[1997] and Mariano and Morales [2001], offers standardized
optimization problems such astheTSP, truck loadingand un-
loadingandcrystallography problems. Theresults, which are
the average of 30 training sessions with 1000episodes, are
presented in Tables 4, 6, and 5. Ten different problems were
considered: the first 7 ones are TSPs, and the last 3 ones are
ATSPs (Asymmetric TSPs). The number of cities in each
problem ranged from 48 to 170, and is shown in the name of
theproblem (for example, 52cities in the‘berlin52’ problem,
andso on).

Table 4 presents the best result found byDQL, ACS and
HADQL after 1000 iterations (in 30 trials). It can be seen

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

53

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100

A
ve

ra
ge

 s
iz

e
of

 th
e

so
lu

tio
n

Episodes

DQL
ACS

HADQL

Figure2: Comparison betweenthe algorithmsDQL, ACSand
HADQL applied to thekroA100TSP.

Problem Known DQL ACS HADQL
Solution

berlin52 7542 15424 8689 7824
kroA100 21282 105188 25686 24492
kroB100 22141 99792 27119 23749
kroC100 20749 101293 24958 22735
kroD100 21294 101296 26299 23839
kroE100 22068 102774 26951 24267
kroA150 26524 170425 33748 32115
ry48 14422 26757 16413 15398
kro124 36230 122468 45330 42825
ftv170 2755 18226 4228 3730

Table 4: Shortest routes found bythe algorithms DQL, ACS
andHADQL after 1000episodes(best of 30 trials).

that HADQL solutions are better than the solutions from the
other two algorithms for all the problems. The same occurs
for the average of the best results foundafter 1000episodes
(Table 5). Figure 2 shows the evolution of the averageof the
results found byDQL, ACS and HADQL when solving the
kroA100 problem, and Figure 3 shows the same results for
the ACS and HADQL, with errorbars. It is possible to seein
both figures that HADQL convergesfaster to thesolution.

The averagetimeto findthesesolutions, shown in Table6,
indicates that the DQL is the fastest algorithm. This occurs
becauseDQL convergesfirst, but to asolution of poorer qual-
ity. A comparison between mean times to find the best solu-
tion between the ACS and HADQL algorithms shows that
there is no significant difference between them. It is worth
noticing that small i mprovementsmay occur at any time, be-
causebothalgorithmsarefollowingan ǫ−greedy exploration
policy. For this reason, the variation in results is very large,
which is reflected in the error measure.

Finally, Student’s t–test [Spiegel, 1998] wasused to verify
thehypothesisthat theHADQL algorithm producesbetter re-
sults that theACS. This test showed that all the resultsof the
HADQL are better than the ones obtained with ACO, with

24000

26000

28000

30000

32000

34000

36000

38000

40000

42000

0 20 40 60 80 100

A
ve

ra
ge

 s
iz

e
of

 th
e

so
lu

tio
n

Episodes

ACS
HADQL

Figure 3: Comparison between the algorithms ACS and
HADQL applied to thekroA100TSP(with errorbars).

Problem DQL ACS HADQL

berlin52 16427± 540 8589± 139 7929± 61
kroA100 108687± 2474 26225± 542 25114± 353
kroB100 105895± 2949 27337± 582 24896± 463
kroC100 105756± 2710 25985± 737 23585± 361
kroD100 104909± 2293 26188± 533 24441± 274
kroE100 108098± 2652 26723± 557 25196± 359
kroA150 179618± 3397 35816± 998 33532± 603
ry48 29562± 1131 16285± 195 15538± 58
kro124 127911± 2485 46394± 599 43482± 322
ftv170 19278± 373 4532± 104 3982± 98

Table 5: Average sizeof the results found bythe algorithms
DQL, ACS and HADQL after 1000episodes (average of 30
trials).

a level of confidencegreater than 99,99%, a fact that shows
that thesmall differencesthat existsbetween both algorithms
is enoughto make HADQL perform slightly but consistently
better than ACS. Thesametest applied to the averagetimeto
reach thebest result showed that thereisnosignificant differ-
encein theperformanceof the two algorithms.

The parametersused in the experimentswere the same for
the three algorithms: the learning rate is α = 0, 1, the ex-
ploration/exploitationrate is p = 0.9 and the discount factor
γ = 0.3. The value of β in the ACS algorithm was set to
2 and the value of η = 10 in the HADQL (these parameters
areidentical to thoseused byDorigoandGambardella[1997]
andMarianoandMorales[2001]). Valuesin theQ tablewere
randomly initiated, with 0 ≤ Q(s, a) ≤ 1. The experiments
were programmed in C++ and executed in a AMD Athlon
2.2MHz, with 512MB of RAM in aLinux platform.

8 Conclusion
In this paper we proposed a new algorithm – HADQL,
showed that ACScan beseen asaHARL algorithm andcom-
pared the two algorithms in the TSP domain. The results

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

54

Problem DQL ACS HADQL
berlin52 7± 3 12± 7 11± 6
kroA100 37± 13 89± 50 73± 43
kroB100 44± 17 85± 44 88± 47
kroC100 51± 27 82± 48 89± 38
kroD100 47± 21 98± 39 74± 39
kroE100 48± 22 80± 43 80± 45
kroA150 91± 42 267± 136 294± 154
ry48 6± 3 9± 6 3± 4
kro124 62± 25 89± 42 95± 43
ftv170 113± 73 317± 122 333± 221

Table 6: Average time (in seconds) to find the best solu-
tion using the algorithms DQL, ACO and HADQL, limited
to 1000episodes.

show that HADQL andACS havesimilar performances, as it
would be expected from the hypothesis that they are, in fact,
instancesof thesame classof algorithms.

Despite the similarity between the HADQL and the ACS
algorithms, the results showed a small advantage for the first
one. We believe that this advantage is caused by the fact that
the HADQL performs partial updates over copies of the Q-
table, avoiding updates without rewards, and bythe fact that
the reward given in both algorithmsaredifferent.

Future work include testing other forms of combining Q-
valuesand heuristics in the actionselection, and the compar-
ison of other ACO andHARL algorithms, such ascomparing
theMax-Min Ant System (MMAS) [DorigoandBlum, 2005]
with the HAMMQ [Bianchi et al., 2007].

References
ReinaldoA. C. Bianchi, CarlosH. C. Ribeiro, andAnnaH. R.

Costa. Heuristic selection of actions in multiagent rein-
forcement learning. In Manuela M. Veloso, editor, Pro-
ceedingsof the20th International Joint ConferenceonAr-
tificial Intelli gence(IJCAI’ 2007), Hyderabad, India, Jan-
uary 6-12, 2007, pages690–695, 2007.

ReinaldoA. C. Bianchi, CarlosH. C. Ribeiro, andAnnaH. R.
Costa. Acceleratingautonomouslearning by using heuris-
tic selection of actions. Journal of Heuristics, 14(2):135–
168, 2008.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm
Intelli gence: From Natural to Artificial Systems. Oxford
University Press, New York, 1999.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Inspira-
tion for optimization from social insect behaviour. Nature
406[6791] , 2000.

Marco Dorigo and Christian Blum. Ant colony optimization
theory: a survey. Theor. Comput. Sci., 344(2-3):243–278,
2005.

Marco DorigoandLucaM. Gambardella. Ant colonysystem:
A cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computa-
tion, 1(1), 1997.

PanGuandAnthonyB. Maddox. A framework for distributed
reinforcement learning. In Gerhard Weiß and Sandip Sen,
editors, Adaption andLearningin Multi -Agent Systems, IJ-
CAI’ 95 WorkshopProceedings, Monréal, Canada, August
21, 1995, volume 1042 of Lecture Notes in Computer Sci-
ence, pages97–112, Berlin Heidelberg, Springer, 1996.

Leslie P. Kaelbling, Michael L. Littman, and Andrew W.
Moore. Reinforcement learning: A survey. Journal of Ar-
tificial Intelli genceResearch, 4:237–285, 1996.

Sven Koenig and R. G. Simmons. The effect of represen-
tation and knowledge on goal–directed exploration with
reinforcement–learning algorithms. Machine Learning,
22:227–250, 1996.

Martin Lauer and Martin Riedmill er. An algorithm for dis-
tributed reinforcement learning in cooperativemulti -agent
systems. In Pat Langley, editor, Proceedings of the Sev-
enteenth International Conference on Machine Learning
(ICML 2000), Stanford University, Standord, CA, USA,
June29- July 2, 2000, pages535–542. MorganKaufmann,
2000.

Michael L. Littman and Csaba Szepesvári. A generalized
reinforcement learning model: convergence and applica-
tions. In Lorenza Saitta, editor, Proceedings of the Thir-
teenth International Conference (ICML ’96), Bari, Italy,
July 3-6, 1996, pages310–318. Morgan Kaufmann, 1996.

Carlos E. Mariano and Eduardo F. Morales. DQL: A new
updating strategy for reinforcement learning based onQ–
learning. In Luc De Raedt and Peter A. Flach, edi-
tors, EMCL 2001, 12th European Conferenceon Machine
Learning, Freiburg, Germany, September 5–7, 2001, vol-
ume 2167 of Lecture Notes in Computer Science, pages
324–335, Berlin Heidelberg, Springer, 2001.

Tom Mitchell . MachineLearning. McGraw Hill , New York,
1997.

Mark D. Pendrith. Distributed reinforcement learning for a
traffic engineering application. In Carles Sierra, Maria
Gini, Jeffrey S. Rosenschein, editors, Proceedings of the
fourth international Conference on Autonomous agents,
June 3-7, 2000, Barcelona, Catalonia, Spain, pages 404–
411. ACM, 2000.

Gerhard Reinelt. Tsplib95. Technical report, Universitat Hei-
delberg, 1995. Technical Report. Universitat Heidelberg.

Stuart Russell and Peter Norvig. Artificial Intelli gence: A
Modern Approach. PrenticeHall , Upper SaddleRiver, NJ,
1995.

Murray R. Spiegel. Statistics. McGraw-Hill , 1998.

Thomas Stützle and Marco Dorigo. A short convergence
proof for a class of ant colony optimization algorithms.
IEEE Trans. Evolutionary Computation, 6(4):358–365,
2002.

Christopher J. C. H. Watkins. Learning from Delayed Re-
wards. PhD thesis, University of Cambridge, 1989.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

55

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

56

Combining Learning, Deliberation and Reactive Control in Simulated Soccer: The
DAInamite Framework

Martin Berger, Holger Endert and Simon Joecks
DAI-Labor, TU Berlin

Faculty of Electrical Engineering
and Computer Science

{martin.berger, holger.endert, simon.joecks}@dai-labor.de

Abstract
Developing the behaviour of agents that act in com-
plex domains is often done by following a divide
& conquer strategy. There, the resulting pieces of
work usually have to be finished by applying differ-
ent solution methods like learning, planning, rule-
based systems or a combination of them. In this
paper we present a framework for simulated soc-
cer agents that enables the integration and combi-
nation of these methods in a straightforward man-
ner. We furthermore demonstrate the fitness of our
approach in a case study in the Robotic Soccer do-
main.

1 Introduction
Since the very beginning of the studies on multi-agent sys-
tems, many architectures and frameworks for creating agents
for different purposes have been developed and published so
far. Usually, the properties of the domain in which the agent’s
act determine the type of the framework that has to be used.
For instance, having hard real-time constraints leads to reac-
tive control, whereas for intelligent applications, BDI frame-
works may be suited best. However, in many cases there is
no best or unique way of building agents, such that frame-
works ideally have to support the development of hybrid ap-
proaches.

Implementing the behaviour of agent’s for real-world sce-
narios is one instance of a very challenging task. An example
of such a domain is Robotic Soccer, in which teams of robots
compete against each other in a soccer challenge. With re-
spect to the software, the current research focus lies mainly
in machine learning, whereas especially reinforcement learn-
ing was applied extensively (e.g. in [Riedmiller and Withopf,
2005]). In [Stone, 2000], an approach which uses several
machine learning algorithms to achieve a joint strategy of a
robotic soccer agent has been developed, following an ap-
proach called layered learning. Further the use of neural net-
works, decision trees and other AI techniques is rather com-
mon.

So far, only few work has been investigated on frameworks
that ease the development of agents in such domains. One
exception is given in [Berger, 2006], which uses a task-tree
that allows for BDI-type reasoning in combination with utility

functions in the so called Doppelpass-Architektur. Though it
addresses many of the requirements, especially the integra-
tion of learned behaviours is left open. In [de Boer and Kok,
2002], the agents were even implemented without a specific
framework or methodology and this work has been used for
a long period of time as a reference. A framework that sup-
ports teamwork [Tambe, 1997] was applied in the early stages
of RoboCup, but due to the restricted communication band-
width with only limited success. Finally, a short description
of a hybrid framework that incorporates reactive and delib-
erative control was published by [Sun and Wu, 2006]. The
integration of learned behaviours is also still an open matter.

As a result, there is room left for research on architectures
and frameworks in the robotic soccer domain. Therefore we
approach the issue of designing a framework that offers sup-
port in the development of intelligent agents without limiting
to either one of the aforementioned solution techniques. Fur-
thermore, well-proven concepts like task-trees or utility func-
tions are incorporated. The framework is fully implemented,
and we provide a case study which serves as a proof of con-
cept and gives rise to the underlying methodology.

The remainder of this paper is organized as follows: In Sec-
tion 2, we provide an overview about RoboCup and the Sim-
ulation League 2D. In Section 3, we explain the main compo-
nents and features of our framework, especially the integra-
tion of the different approaches for behaviour development.
Thereafter we demonstrate the adequacy of the framework by
presenting a case study in Section 4. Finally we close with a
discussion of our results in Section 5, and we conclude and
give rise to future work in Section 6.

2 RoboCup and Simulated Soccer 2D
The RoboCup initiative1 [Kitano et al., 1998] aims at pro-
moting research that combines AI, robotics and further re-
lated fields. The ultimate goal is to be able to build intelligent
and humanoid robots that can perform difficult or even dan-
gerous tasks in the future. To this end, robotic soccer was
introduced as challenging test bed, and since then researchers
from all over the world present their advancements and let
their (possibly simulated) robots compete against each other
in annual competitions. In order to have comparable results
in the different areas of research, sub-leagues with a distinct

1See http://www.robocup.org

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

57

focus have been established. While most of these leagues
have robotics as central theme, the simulation leagues have a
strong relation to multi-agent systems and AI.

RoboCup Simulated Soccer 2D [Noda et al., 1998] has
been a popular test bed for developing software agents in the
past. The simulation runs in a client-server style, whereas the
server (simulator) controls every aspect of the environment.
The agents connect to the simulator and take control over one
player each.

The simulator abstracts from real hardware and uses a
rather simple two dimensional model of the environment.
Nevertheless it contains almost all relevant properties and re-
strictions of real-world applications. A discrete time model
is used, in which each simulation step (called cycle) lasts
100ms. Agents are modeled as circular shapes with an ori-
entation (see Figure 1). They can perform actions like mov-
ing or kicking the ball, and they have to build and maintain
a world-model from sensory input received by the simulator.
The communication bandwidth between agents is very lim-
ited and noise is added to both, sensory data and actions, by
the simulator.

Figure 1: The model of a player in the RoboCup 2D Simula-
tion League

In summary, teams of agents that act in the Simulated Soc-
cer domain have to deal with real-time constraints, high un-
certainty in sensing and acting and an adversarial that tries to
prevent the fulfillment of the respective goals.

3 The DAInamite Framework
The DAInamite Framework has it’s origin in the develop-
ment of a team for the RoboCup 2D Simulation League
called DAInamite2, which participates since 2006 in the an-
nual championships. Since then, the agent improved in struc-
ture and functionality, and later, the framework was extracted
from the team’s code. Though it was only applied in simu-
lated soccer so far, we believe that it will be usable in similar
domains without many adaptations.

In the remainder of this section, the structure and internal
control of the agent is presented in depth, focusing on the
representation of the behaviours and the action selection al-
gorithm.

3.1 The Agent
The agent consists of three main components which are the
synchronization, the world-model and the tactic. The syn-
chronization controls the internal workflow of the agent, i.e.

2See http://www.dainamite.de

when to integrate new sensory data and when to compute and
execute the next action. It generally realizes the sense-think-
act control paradigm [Russell and Norvig, 2003] which is
common for robots and agents that act in real-world settings3.
The world-model contains the beliefs of the agent about the
environment, and is kept up-to-date by processing sensory in-
put. The tactic encapsulates the available behaviours of the
agent plus the action selection algorithm. Both, the tactic and
the synchronization, run in concurrent processes.

The World-Model
The world-model consists of two parts. The first is a data stor-
age, which is subsequently called belief-base or simply be-
liefs. It may be accessed and queried from outside the world-
model. The second is a list of update routines that are re-
sponsible for adding given and derived knowledge from sen-
sor data into the data storage. The update routines are called
facts. These are only visible from within the world-model.
The basic framework contains facts that are able to calcu-
late the positions, velocities and other related or important
knowledge about the own player, about the teammates, the
opponents and about the ball. Further facts implement de-
rived knowledge, such as the next expected position, where
the ball is intercepted by the fastest player, called the inter-
ception point 4.

The beleif-base has an interface which is accessible from
outside the world model, especially from the tactic.

The Tactic
The structure of the tactic is basically a tree, in which the
leafs represent specific behaviours, e.g. dribbling or scoring,
and the nodes represent application conditions. An example
tree is given in Figure 2. There, the node Striker is a condition
that evaluates the role of a player, whereas the nodes called
PenaltyTaken or PenaltyReady evaluate the state of the game
(i.e. the play-mode). The leafs represent the behaviours for
dribbling, scoring, outplay-goalie and intercepting the ball. It
is easy to see that all conditions from a behaviour node to the
root of the tree must be fulfilled in order to let the correspond-
ing behaviour become active.

We now define the tree structure formally as follows:

Definition 1 (Tactic-Tree) - A Tactic-Tree T = (V,E) is a
directed acyclic graph and consists of a set V of vertices,
subsequently called nodes, and a set of edges E. V is fur-
thermore partitioned into the two disjoint subsets Vc, called
conditional nodes, and Vb, called behaviour nodes, whereas
V = Vc ∪ Vb.

Since the behaviour nodes Vb have to be leafs, one further
property of the tree must be satisfied:

• ∀(vi, vj) ∈ E : vi 6∈ Vb

Finally, the following operations are defined for processing
the tactic-tree:

• root : T → V - retrieves the root-node of the tree.
3In the RoboCup 2D Simulation League, the sensor-data arrives

at the beginning of a cycle, such that this paradigm works well here
4This quantity is very important in Robotic Soccer, since it de-

termines which team is in possession of the ball.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

58

Figure 2: An excerpt from the tactic-tree.

• children : Vc → {V } - retrieves the all ancestors of a
node via the edges of a tree.
• condition : V × beliefs → {true, false} - evaluates

a boolean statement of a given node that depends on the
beliefs of an agent.
• filter : V × beliefs→ {Vb} - traverses the tree to find

applicable behaviour nodes.
• thinkStep : Vb × beliefs → [0, 1] × Action - re-

trieves action-utility pairs from behaviour nodes, which
are considered for execution by the tactic.
• done : Vb → {true, false} - checks, of the given be-

haviour node can compute further actions.
These functions are the basic operations for finding actions

in a given situation. Note that the utility value returned in
thinkStep is defined by the product of two related values.
The first is the probability that the effect of the action takes
place (success-probabilty) and the second is the utility for it’s
successful execution (success-benefit). The complete action
selection algorithm together with the specification of some of
these functions is given in the next subsection.

3.2 The Action Selection Mechanism
The action selection mechanism must fulfill two mayor re-
quirements. First, it has to compute a valid action, and sec-
ond, it has to return this action in reasonable time. Further-
more, the algorithm must allow to integrate reactive, delib-
erative and learned behaviours. We first present the general
algorithm, and then discuss how these different approaches fit
into it.

The first task of the action selection algorithm is to find
all applicable behaviours. Therefore let T be a tactic-tree, v
be it’s root, and B the current beliefs of the agent. Finding
all applicable behaviours is done with the filter-function,
which works as presented in Listing 1:

Listing 1: Algorithm of the filter-function:

f u n c t i o n f i l t e r (v , B)
{

i f (v ∈ Vc ∧ condition(v,B) = true)
{

r e t u r n
⋃

vi∈children(v) filter(vi, B) ;
}
e l s e i f (condition(v) = true)
{

r e t u r n {v} ;
}

}
As can be seen, filter finds all behaviours from the root-

node on, whereas each node on the path to the behaviour-node
must evaluate the condition to the boolean value true. Oth-
erwise, the nodes and the following behaviours are ignored.
Thereafter, the tactic processes the filtered behaviours iter-
atively, until either the current simulation cycle draws to a
close, all behaviours finished all their thinkSteps or an ac-
tion with with sufficient utility is found. This algorithm is
given in Listing 2:

Listing 2: Algorithm that computes the action to execute:

f u n c t i o n c omp u te Be s tA c t i on (T a c t i c T r e e T ,
B e l i e f s B)

{
/ / i n i t i a l i s e
r := r o o t (T) ;
S := f i l t e r (r , B) ;
u∗ := 0 ;
a∗ := n u l l ;

/ / i t e r a t e ove r b e h a v i o u r s
w h i l e (t h i n k)
{

s e l e c t s from S ;
(a , u) := t h i n k S t e p (s , B) ;

i f (done (s))
{

remove s from S ;
}

i f (u > u ∗)
{
u∗ = u ;
a∗ = a ;

}
i f (t imeup () o r u∗ > t h r e s h o l d)
{

t h i n k = f a l s e ;
}

}
While the function computeBestAction is running, the

synchronization guards concurrently, how much time is left
for processing until the next action has to be sent. When time
is up, it requests the currently found a∗ from the tactic, and

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

59

causes the timeup-function to return true. This procedure is
repeated in every cycle.

Due to the approach of iteratively requesting actions from
the applicable behaviour nodes, it can be viewed as a hori-
zontal layered architecture. And since the synchronization is
able to stop computing, the time-constraints can be satisfied.
However, the main requirement is that the computations can
be divided into small units that are triggered by thinkSteps.
We will explain next, how this work for reactive, learned and
deliberative behaviours.

3.3 Reactive Control
Reactive behaviours are the most basic ones. We consider
reactivity to be a rule-based response of the agent to a sit-
uation, whereas we allow the rules to be defined on the be-
liefs of the agent and not just on the sensory input. A rule
can be represented by a behaviour node in a straightforward
manner. The definition of the rule-condition is given by the
conjunction of all the conditions of the nodes that lie on the
path from the behaviour to the root node. This condition is
computed in the filter function. The rule-body is given by
the implementation of the thinkStep of the behaviour node.
Such a behaviour should always return true on calling the
done-function.

A complete tactic relying only on reactive behaviours, even
without considering the utilities, can be designed. The result
would be a very huge tree, which only returns one behaviour
for any situation the agent is in. Such a tree is difficult to
maintain, and it is not easy to see, if it produces meaningful
actions for every situation.

There are a few examples for reactive control already im-
plemented. A very simple example is the goalie catching the
ball if it is close to him, possibly resulting from a suboptimal
attempt of an opposing player to score a goal.

3.4 Integrating Machine Learning
Machine learning can be applied to many sub-problems of
simulated soccer, from predicting world-state values to learn-
ing how to behave in specific situations. We limit our scope
to action selection and related problems, and especially elab-
orate on reinforcement learning.

A rather straightforward approach can be chosen, when
the success probability of a given action should be deter-
mined. Common machine learning algorithms, such as neu-
ral networks may be trained in advance, and integrated into
a behaviour-node for computing the requested value directly.
If the requested value may be important for other behaviour-
nodes as well, the learning algorithms should be integrated
into a fact which provides the value by writing it into the
belief-base.

As reinforcement learning (RL) is a very central issue in
RoboCup, we spend some extra consideration on it. With RL
an agent learns a policy π by trial and error. After trying an
action a ∈ A in a specific situation s ∈ S, the agent receives a
reward r and updates a value function, usually the state-action
value function called Q 5. We consider the value function to
be knowledge which is stored in the belief-base. For this we

5Depending on the choice of the RL algorithm.

implemented a fact which manages the access to the abstract
reward function and provides methods to load and store the
reward to preserve the learned information for the next train-
ing phase or match.

Finally, the behaviour node that implements RL is the rep-
resentation of the policy π. The differences in the two cases
of learning or using a trained policy are explained next.

Using a Trained Policy
If the value function provides an acceptable approximation
for each state-action pair that may occur, the corresponding
behaviour node is used like any other ordinary behaviour-
node. If the tactic was able to find a path from the tac-
tic’s root through the conditional nodes, the thinkStep is
computed. Therefore the behaviour-node simply queries the
world-model for the value function and uses it to determine
the action that yields the best reward. The reward is returned
and the action is stored for execution in case the behaviour-
node has the highest utility. If finding the action with the
highest reward includes a search over multiple alternatives,
the search may be divided into futher thinkSteps.

Learning a Policy
Before using a policy effectively, the agent has to learn the
policy and the value function. Since the value-function and
the policy are distributed in the agent framework, the interac-
tion is not that simple. Learning a policy with RL was inte-
grated as follows:

1. If an RL behaviour-node is selected, an action ai is cal-
culated depending on the RL configuration (e.g. by fol-
lowing an ε-greedy algorithm).

2. The corresponding world-state si, and the action ai are
stored in the world-model.

3. The fact that manages the value-function observes the
following world-state si+1, and calculates the rewards
r.

4. After that, the fact queries the previous state si and the
action ai, and either makes an update to the value func-
tion using the common update rules [Sutton and Barto,
1998], or buffers the tuple (si, ai, r) 6 for later batch
learning phases.

This way it is possible to have several such learning
behaviour-nodes actively learning a behaviour simultane-
ously (although this may lengthen the learning process if
there exist dependencies between these behaviours).

3.5 Integrating Deliberation
Because of the highly dynamic and fluctuating nature of the
RoboCup domain, planning more than a few cycles ahead
becomes difficult. Planning is nevertheless important, even
though the results have to be validated or recomputed very
often. Other domains may furthermore have nicer character-
istics in terms of dynamics than RoboCup.

We consider planning to be a search in the space of actions
towards the fulfillment of a given goal. The requirement we
impose on the planning algorithm is the ability to interrupt

6Also depending on the algorithm

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

60

and resume planning. This allows to divide the process into a
sequence of thinkSteps. If after one step the process has no
result, it returns a utility of 0, and will resume planning the
next time the behaviour is triggered.

An examples that make use of this approach is the pass-
ing behaviour. By simulating different kicks in all directions
and with reasonable speed, a good pass may be found. We
divided the search by analysing and assessing each kick sepa-
rately within a thinkStep. Behaviours that plan sequences of
actions could be implemented as well, but these have to check
the applicability of a computed plan during it’s execution in
every subsequent cycle. Finally we note, that the interval of
interrupting the planning process may in many cases be con-
figurable as well, leading to flexibilty in assigning processing
time to certain behaviours.

4 Case Study: Penalty Shoot-out
For the sake of determining the fitness of the framework
for integrating learned behaviours we decided to take on the
penalty shoot-out, a sub-scenario of RoboCup, in which co-
ordination and team play are negligible, hence reducing com-
plexity.

The penalty shoot-out is a direct confrontation between a
field player of the attacking party, referred to as striker, and
the opposing goalie defending its goal. The striker starts with
possession of the ball near the center of the play field. The
scenario is not limited to a single kick like a spot kick penalty
seen in conventional soccer, so the striker is allowed to move
freely with the ball, kicking and sprinting as he desires. The
striker tries to score a goal while the goalie of the defending
side tries to prevent that. A penalty attempt is aborted, re-
sulting in a penalty miss for the striker, if either the specified
time (usually 200 simulation cycles) runs out, the ball leaves
the play field or is caught by the goalie.

In this scenario we concentrated on the striker. We imple-
mented and aggregated some skills we felt to be helpful to
result in a competent tactic for the striker. These skills in-
clude the following:
• Scoring: Determining the kick that has the highest prob-

ability of success.
• Dribbling: Executing dribblings that don’t forfeit pos-

session of the ball, while swiftly approaching the goal.
• Bypass goalie: Executing kicks to bypass a well posi-

tioned goal keeper and reach potential scoring situations.
• Intercept ball: Finding and reaching good interception

points to quickly regain control over the ball.
Wherein scoring has been learned off-line from a before-

hand collected training set, using neural networks to predict
the outcome of potential scoring attempts. Dribbling and
bypassing the goalie use reinforcement learning to adapt
during play. The intercept ball skill uses domain dependent
planning to determine the series of actions needed to quickly
close in on the ball.

The single approaches are now explained in detail.
In our scenario we defined dribbling as closing in on the

goal (and hence goalie) swiftly while not risking to loose ball

possession. To archive this behaviour the agent received a re-
ward relative to the change in distance to the goal with the ad-
dition of a huge penalty if ball possession was lost as a direct
consequence of selecting an action returned for dribbling.

The second learning skill, bypassing the goalie, uses rein-
forcement learning, too. The target was to find actions that
may lead to a situation in which the probability of scoring,
as determined by the scoring skill, is higher than the one in
the current situation. For this sake the striker was placed into
a training scenario, in which he was randomly placed on the
play field’s half with the target goal, while being in control
of the ball (able manipulate it). The opposing goalie was
also placed randomly within the vicinity of the striker, with a
higher probability for positions somewhere between the goal
and the ball.

Our approach to scoring was inspired by [Kok et al.,
2002]. We applied the idea of separating the two probabil-
ities for the ball to arrive in the goal, and to be intercepted
by the goalie. With the difference that we viewed both cases
as a classification problem using neural networks to learn
from a recorded data-set and to interpret the confidence
in the classification results as probabilities. Making the
assumption these two events are independent, the two
obtained probabilities could just be multiplied to receive
the joint probability. So in the case of scoring we have two
separate neural networks, one calculating the probability of
the ball entering the goal if the goalie would not intervene,
the other calculating the probability the goalie is able to catch
the ball or otherwise hinder it from crossing the goal line.
These two networks are both loaded and used in a single
fact to find the kick action with the best joint probability of
resulting in a goal. This fact continuously calculates this
probability when new input arrives. The calculation is done
by generating a series of possible kick actions and comparing
their probabilities returned by the two neural networks. The
action with the highest probability is then stored together
with its corresponding rating, the calculated probability, in
the agent’s world model. Both, the action and the rating
are retrieved and exposed by the tactic’s behaviour-node for
scoring.

The next step in aggregating the single skills to an overall
tactic was to create a policy that coordinates them. We started
off combining scoring, ball interception and dribbling, later
adding the bypassing of the goalie.

Since the intercept ball skill is only active if we are not in
possession of the ball, it does not compete for control with the
other skills. If the agent is in possession of the ball, however,
there are three alternatives to choose from. We implemented
our approach based on the fact that scoring should always
return the probability of a goal for the current situation as its
utility. So the utility of dribbling works as a threshold for
executing a scoring attempt.

Later the bypassing goalie behaviour-node was added, syn-
chronizing its own utility with scoring, leading to a higher
benefit for a sidekick if it is expected the agent can further
improve the scoring rating with it. If this is not the case a
scoring attempt from the current situation is generally rated
higher than the bypass.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

61

Since the penalty scenario has a time limit and the im-
plemented behaviours could possibly lead to a deadlock, we
added some logic for scoring to take over control in certain
situations. We execute a scoring attempt if the remaining time
is running out and the ball would cross the goal line just a
few cycles before the penalty will be aborted due to time-out,
when considering a direct kick in direction of the goal.

5 Results
Through testing we found a threshold of 0.4 for the scoring
rating to be a good trade off between taking risky shots and
coming too close to the goalie to be convenient. This simple
tactic alone was enough to reliably score against some of the
weaker goalies in the penalty scenario. Here the percentage
of number of goals in the number of taken penalty-attempts
was greater than 80%. Against more sophisticated goalies
however the percentage of successful attempts dropped down
to between only 17% and 19%.

In the learning setup the learning curve of the bypass skill
using reinforcement learning method displayed a fast learning
increase in the beginning. In the following epochs, however, a
clear, additional, stable increase could not be observed. Fig-
ure 3 shows this increase in the performance of the overall
tactic. Note that these values are not from the actual penalty
scenario, but were recorded from the very same scenario the
skill was trained in, described above.

Figure 3: Average goals per episode of the complete tactic in
the training scenario of bypass goalie.

With the addition of the bypass skill, we were able to im-
prove the overall performance against stronger goalies, for
this tactic, by nearly 70%, after an extended period of learn-
ing, in comparison to the same tactic missing this behaviour-
node.

6 Conclusion and Future Work
We were able to incorporate on-line and off-line learning
methods without much effort into the agent’s tactic, without
having to deviate from the existing concepts and paradigms
used in the DAInamite framework. Even if the learned results
are far from being optimal, we were able to demonstrate that

there is no difficulty in adding even more complex on-line
learning or planning behaviours to the agent.

The next step is to show the possibility to integrate higher
level decisions by means of learning and/or planning. This
way coordination of a selected set of behaviour-nodes may
be learned instead of being coded, and tuned by hand. Even
though this was not done up to now it surely does not seem
to be an overly complex task if the number of behaviors to
select from is small, and the number of decisions is limited,
like for example in the penalty-scenario. So we may be able
to demonstrate this step, too, in the near future.

References
[Berger, 2006] Ralf Berger. Die doppelpass-architektur

verhaltenssteuerung autonomer agenten in dynamischen
umgebungen. Diploma thesis, Humboldt-Universitt zu
Berlin, Institut fr Informatik, 2006.

[de Boer and Kok, 2002] Remco de Boer and Jelle Kok. The
incremental development of a synthetic multi-agent sys-
tem: The uva trilearn 2001 robotic soccer simulation team.
Master’s thesis, University of Amsterdam, The Nether-
lands, 2002.

[Kitano et al., 1998] Hiroaki Kitano, Minoru Asada, Yasuo
Kuniyoshi, Itsuki Noda, Eiichi Osawai, and Hitoshi Mat-
subara. Robocup: A challenge problem for ai and robotics.
pages 1–19. 1998.

[Kok et al., 2002] Jelle Kok, Remco Boer, and Nikos Vlas-
sis. Towards an optimal scoring policy for simulated soc-
cer agents. In RoboCup 2002: Robot Soccer World Cup
VI, pages 292–299. SpringerVerlag, 2002.

[Noda et al., 1998] Itsuki Noda, C Fl Itsuki Noda, Hitoshi
Matsubara, Hitoshi Matsubara, Kazuo Hiraki, Kazuo Hi-
raki, Ian Frank, and Ian Frank. Soccer Server: A Tool for
Research on Multiagent Systems. Applied Artificial Intel-
ligence, 12:233–250, 1998.

[Riedmiller and Withopf, 2005] M. Riedmiller and D. With-
opf. Effective methods for reinforcement learning in large
multi-agent domains. Information Technology Journal.,
241-249:47(5), 2005.

[Russell and Norvig, 2003] Stuart J. Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach. Pear-
son Education, 2003.

[Stone, 2000] Peter Stone. Layered Learning in Multiagent
Systems: A Winning Approach to Robotic Soccer. MIT
Press, 2000.

[Sun and Wu, 2006] Yong Sun and Bo Wu. Agent hybrid ar-
chitecture and its decision processes. Proceedings of the
Fifth International Conference on Machine Learning and
Cybernetics, 2006.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction (Adap-
tive Computation and Machine Learning). The MIT Press,
March 1998.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Jour-
nal of Artificial Intelligence Research, 7:83–124, 1997.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

62

Hierarchical Activation Spreading: A design pattern for action selection

Michael Müller
Lehrstuhl Intelligente Systeme

Fakultät für Ingenieurwissenschaften
Universität Duisburg-Essen

michael mueller@uni-due.de

Abstract

Action selection for a robot means to activate be-
haviors in a timely manner so that both, short-term
and long-term goals, are met, e.g. avoiding an ob-
stacle and completing a complex task. Maes has
described an algorithm that spreads activation en-
ergy in a network to pursue a set of goals, uses
emergence for creating a plan, and selects an action
suitable for the current situation. Many extensions
to this algorithm have been proposed to achieve a
higher degree of flexibility and applicability. In this
paper an algorithm for action selection is presented
that is based on Maes’ algorithm and its extensions.
Then a design pattern is described as a guideline
for developers to build an action selection system
based on the proposed algorithm.

Keywords
Decision Making, Behavior-based Robotics and Emergent
Control, Architectures and Architectural Patterns

1 Introduction
For many years robots have been successfully used in indus-
trial assembling. Today applications are developed to make
use of robots in other domains like automotive, transport,
healthcare, and entertainment. Here both, the complexity of
the environment and the necessary autonomy of the robots
are considerably higher. Preprogrammed sequences of move-
ments can no longer be used. So a mechanism has to be es-
tablished that allows a robot to react to its environment, to
create a plan and to act situation-dependent.

In [Pirjanian, 1998] different approaches are compared.
Some of them mostly react to the current situation without
pursuing a long-term plan. Others need a huge amount of in-
formation about the environment to build a perfect plan for
the actions of the robot. Between these two extremes there
are many hybrid approaches.

Maes has formulated a set of properties for action selection
in an autonomous robot [Maes, 1990]: In a complex environ-
ment it is nearly impossible to collect all information in ad-
vance. This makes it impossible to create a complete set of
rules for all possible situations. So action selection should be

able to do its work even in situations that were not known dur-
ing the development. It should also be possible to extend an
existing action selection system with additional knowledge
without the necessity of restarting the whole analysis pro-
cess from the beginning. Action selection should make use
of goals. Goals describe the context; without them each situ-
ation has to carry full context information. Goals may change
over time. The agent has to be able to cope with conflicts be-
tween several goals. Finally, goals enable the agent to learn
by giving the feedback which sequence of actions pursues a
goal and which does not.

The action selection algorithm proposed by Maes has the
formerly described properties and combines reaction and
planning [Maes, 1990]. A self-organizing mechanism is used
to create a sequence of actions by emergence. But there are
also some drawbacks. In the next section the algorithm is de-
scribed in more detail and solutions to avoid its drawbacks
are presented.

2 Emergent action selection in activation
spreading networks

First Maes’ algorithm is described, followed by a description
of a problem and two extensions concerning the activation
spreading mechanism. Then two more extensions concerning
actions and the network structure are described.

2.1 Maes’ action selection algorithm
Maes’ action selection algorithm [Maes, 1990] is based on
three concepts: monitors, actions, and goals1. A monitor in-
spects the conditions found in the environment and calculates
the truth value of a given proposition. Although in the origi-
nal algorithm a strict division into true and false propositions
is used, the algorithm can be adapted to use fuzzy results. An
action becomes executable, if a set of monitors — its precon-
dition — calculates a true value. If an action is executed, then
it will change the values of some monitors. Some of them
will become true and are part of the action’s add list. Others
will become false and are part of the action’s delete list. Fi-

1These three concept names are used throughout this text, be-
cause they are more general resp. shorter than the names used in the
referenced text. Maes denotes a monitor as proposition and an action
as competence module.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

63

nally, a goal is achieved, if a defined set of monitors becomes
true.

By designing the algorithm the following features were
considered:

• A selected action should directly achieve a goal or at
least make the preconditions of other actions true that
are closer to a goal.

• Action selection should be situation-dependent and take
opportunities.

• If a decision was taken and for the execution of actions
some effort was made, the algorithm should prefer ac-
tions that continue on working on this decision.

• Forecast helps to avoid selecting actions that lead to a
dead end.

• If parts of the system can not be used (shortage of re-
sources, system damage), the remaining system should
keep on working robustly.

The algorithm builds a network based on the actions. Each
action stores its activation level. Two actions are connected,
if the add list (or delete list) of the first one and the precondi-
tion of the second one has some monitors in common. Then
activation energy is spread through this network, fed in by
two sources and distributed over three types of connections:

• If an action has monitors of a goal in its add list, it re-
ceives activation energy from this goal.

• If an action has a true monitor in its precondition, it also
receives activation energy.

• If an action is not executable, but has received some ac-
tivation energy, then it distributes it to other actions that
make its precondition become true so that it becomes
executable.

• If an action is executed, it distributes activation energy
to other actions which are connected via its add list.
Hereby starting work on a path in the network will make
continuing work on this path more likely.

• An action receives negative activation energy through
connections via its delete list. Goals and other actions
try to inhibit negative effects on their monitors.

Because more and more activation energy is fed in the net-
work, the activation level of all actions needs to be normalized
to avoid divergence. To select an action, an initial threshold
is set and lowered over time. As long as no action has an acti-
vation level higher than the threshold, the network continues
distributing activation energy. If the threshold gets lower than
the activation level of an action, this action is selected and ex-
ecuted. The activation level of the selected action is reset to
zero, the threshold is reset to its initial value, and the process
starts over again.

Actions between goals and true monitors receive high feed
in of activation energy. Competing paths in the network are
formed by emergence and actions along these paths are se-
lected.

3

dc

a

31

b

32

Figure 1: Left: action a indirectly contributes to goal 1 us-
ing two paths; action b indirectly contributes to goal 1 and 2.
Right: action c and d both contribute to goal 3, but action d is
part of a cycle.

2.2 Indirect contribution to goals

Tyrrell has made several experiments to test Maes’ algorithm.
He found out that in some cases the algorithm distributes
the energy in the network in an undesirable manner [Tyrrell,
1994].

On the left side of figure 1 one problem is illustrated. Ac-
tivation energy is fed in by the two goals 1 and 2, depicted
as rhombs. Both are connected to three actions (squares) via
a monitor (circle). Although each goal is connected to three
actions, only four of them are shown. Activation energy flows
over additional monitors to actions a and b

Branching of activation energy flow underneath goal 1 and
goal 2 does not differ in any way. In both cases energy comes
from one goal and is distributed to three actions. Also merg-
ing of activation energy flow above actions a and b is exactly
the same. In both cases energy comes from two actions and is
distributed to one action. So the locally operating algorithm
can not make a difference in these cases — but there is one.
Action a contributes to one goal, namely goal 1. In contrast,
action b contributes to two goals, goal 1 and goal 2. Therefore
action b should receive a higher amount of activation energy
than action a, but using Maes’ basic algorithm it will not.

Another problem is illustrated on the right side of figure 1.
Only goal 3 feeds in activation energy in the network. Acti-
vation energy flows over a branch of two monitors to actions
c and d. Because there is a cycle in the network graph, acti-
vation energy from action d is distributed to action d again.

Branching of activation energy flow underneath goal 3 is
the same for both paths. Both paths lead to a monitor that
is connected to an action and also receives activation energy
from somewhere else. Also at actions c and d the distribution
of activation energy is equal. Both actions receive activation
energy from one source and distribute it to their predecessor.
Because of the cycle in the network structure and the normal-
ization process the activation level in action d will be higher
than that in action c — but both actions are working towards
the same goal and should have the same activation level. So
in this case the locally operating algorithm makes a difference
where should be none.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

64

2

1.0

0.9

0.8

0.7b

1

1.0

0.9

0.8a

4

e 1.0

0.9

0.8

0.9

d 0.70.8

1.0

3

0.9

0.8

0.70.8 c

0.9

Figure 2: Activation spreading from goals 1 to 4 to actions
a to d. Whereas action c only contributes to goal 3, d con-
tributes to two sub-goals generated at the junction at action
e. It is not clear which activation value should be assigned to
action d.

2.3 Splitting activation energy goal-wise
Dorer has stated that the described problems can be avoided
by changing parts of Maes’ algorithm [Dorer, 1999]. The
problems arise because the locally working algorithm does
not have the information to which goal the current action con-
tributes. This is the reason why equivalent paths to the same
goal are counted multiple times and why an action can in-
crease its own activation level, if it is part of a cycle.

Dorer suggests to store the activation energy obtained from
one goal separately from the others. If an action obtains ac-
tivation energy from one goal through more than one path,
then the maximum is calculated. So only the shortest paths
to each goal is considered. To calculate the activation level
for an action for all goals, the energies are summarized. But
this value is only used for action selection. For distribution
activation energy is kept separately.

The proposed change of the algorithm increases the nec-
essary memory for each action node to store the activation
energies goal-wise. Still the algorithm can work locally.

2.4 Indirect contribution to sub-goals
Working with the extended algorithm proposed by Dorer a
new problem becomes apparent. Figure 2 shows four net-
works with their goals 1 to 4 (depicted as rhombs) and five
labeled actions a to e (depicted as squares). The activation en-
ergy fed in by a goal is 1.0 and is decreased by 0.1 from action
to action. The path between goal 1 and action a contains only
two intermediate actions; therefore action a receives a high
value of 0.8. The path between goal 2 and action b contains
three intermediate actions; action b receives a lower value of
0.7. To reach goal 3, two parallel paths with different length
exist. At action c Dorer’s algorithm chooses the higher value
of 0.8 standing for the shorter path. The new problem occurs

in the fourth graph. To reach goal 4, action e has to be ex-
ecuted. Action e has two monitors as its precondition. So
actions on two paths have to be executed before to make the
precondition true. The algorithm proposed by Dorer will as-
sign the higher activation level 0.8 to action d. But this is not
the correct value. The correct value should be smaller than
that of action b, because the path is longer, even though it is
split into two paths.

The basic idea to solve this problem is to introduce sub-
goals. Because action e has two monitors as its precondition,
the network at this node no longer has one goal 4, but instead
two new sub-goals: to make the first precondition monitor of
action e true and to make the second precondition monitor of
action e true. It is essential to distinguish between this situa-
tion and the situation in the third graph with goal 3. The two
paths leading to goal 3 are alternatives (one better than the
other), the two paths leading to goal 4 both have to be passed
through. In action d the activation energy of both sub-goals
is received and can be used to calculate an appropriate acti-
vation level. More details about this are given in the section
about the revised action selection algorithm.

2.5 Continuous actions
So far actions are considered to solve a complete subtask in
a given time span once they are executed. In simulation ex-
periments often a grid world is used, where each action takes
one time step and either moves the simulated robot to another
cell or carries out a whole subtask. But in real world, actions
of a robot can not be discretized so easily. The time span for
completion of a subtask will not be the same, even in (almost)
the same situation. In addition it is not sure that an action is
able to complete a subtask. Both has to be taken into account
by an action selection algorithm.

Heumüller et al. describe a small change to Maes’ algo-
rithm that allows to use it with actions based on visual servo-
ing [Heumüller et al., 2009]. Visual servoing means that the
robot tries to detect an object with a camera and then moves
in a way that the projection of the object position in the im-
age moves to a defined final position. This process may end
fast, if the projection of the object is already at the defined
position. It may take some time, if there is a long distance
between the object’s projection and the final position. Finally
it is also possible that the camera does not see the object and
therefore movement can not be calculated.

So the activation level of a selected visual servoing action
may not be reset to zero, because it should also be selected
in the next iteration if no other action has received a higher
activation level till then.

2.6 Hierarchical organization
The method described by Maes does not provide for struc-
ture in the activation network. It is argued, that each kind of
structure works against the emergent action selection realized
with this algorithm. By contrast, many research groups use
structured action selection systems, so-called cognitive archi-
tectures. Often these cognitive architectures imitate struc-
tures found in the human brain by biologists and psycholo-
gists. Both, the emergent properties of Maes’ algorithm and
the possibility to realize cognitive architectures, are desirable.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

65

goal

monitor
AND-splitter

AND-merger
action

goal condition

effect
continuation
precondition

output
input

Figure 3: Small network annotated with node types and con-
cepts used in the revised algorithm.

Decugis and Ferber have proposed to use a whole activa-
tion network as single action in a higher level activation net-
work [Decugis and Ferber, 1998]. As long as the higher level
activation network selects this action, the lower level activa-
tion network is active and selects one of its actions. Hereby it
is possible to partition large, complex networks into smaller
parts.

A more general approach that is able to emulate the ap-
proach of Decugis and Ferber is to combine activation net-
works with finite state machines. To accomplish this, a new
kind of monitor has to be introduced that checks, which goals
are achieved. Combined with a new kind of action that is
able to switch goals on and off respectively change their im-
portance it is possible to model state transitions. More details
about this are given in the next section.

3 Revised action selection algorithm
First, an overview of the node types in the network and the
concepts used in the algorithm is given. Then the steps of
the algorithm are described in detail. Finally, the algorithm
is demonstrated on examples based on the problematic net-
works shown in figures 1 and 2.

3.1 Overview
Action selection is realized using networks with five node
types and eight types of connections. Hereby the algorithm is
able to precisely distinguish different concepts and to spread
activation energy accordingly.

Figure 3 shows a small network with one goal, one action,
and a number of monitors with their connections. Each goal
has a goal condition. The more a goal condition is true, the
more the goal is achieved. Each goal condition is connected
to a number of AND-splitters. The value of the goal condi-
tion is calculated as a fuzzy disjunction of the values propa-
gated by the AND-splitters. Each AND-splitter is connected
to a number of monitors. Its value is calculated as a fuzzy
conjunction of the values propagated by the monitors. Each
monitor can be connected to AND-splitters through one of
two outputs. The first output is called the normal output and
propagates a fuzzy value about the property the monitor is
keeping track of being in a defined range. The second output
is called the inverted output and propagates the negated fuzzy
value.

goal
AND-
splitter

AND-
merger

«abstract»
monitor

external
monitor

internal
monitor

«abstract»
action

external
action

internal
action

Figure 4: UML class diagram showing activation network
node types. The gray icons depict the shape of nodes used
in figure 3.

An action becomes the more executable, the more its pre-
condition is calculated to be true. An action will continue its
execution, the more its so called continuation is calculated to
be true. The more successful the operation of an action was
accomplished, the more its so called effect will be calculated
as true. Whereas precondition and continuation are calculated
the same way as a goal condition is, the connection of an ac-
tion’s effect to monitors follows a mirrored scheme: The ef-
fect of an action is connected to a number of AND-mergers,
the AND-mergers are connected to the normal and inverted
inputs of a number of monitors.

The UML class diagram in figure 4 shows the node types
used in activation networks for the revised algorithm. Besides
the three main node types (goals, actions, monitors), special-
ized actions and monitors as well as two nodes for branch-
ing are introduced. An external monitor keeps track of some
property of the environment, checks, whether this property is
in a given range, and reports the result as a value in the range
of [0, 1]. An internal monitor keeps track of the achievement
of a set of goals and also calculates a corresponding value in
the range of [0, 1]. There exist two kinds of actions. An exter-
nal action measures a property of the environment and calcu-
lates the necessary control commands for the robot hardware
so that the property changes towards a defined range. An in-
ternal action changes the importance of goals to influence the
action selection process.

3.2 Details
The algorithm is organized into four steps.

1. Activation energy is fed in by goals and propagates
backwards through the network.

2. Actions, that were executed, propagate their accumu-
lated activation energy forward through the network.

3. The activation level for each action is calculated.

4. In each executing action activation energy is accumu-
lated.

After execution of all four steps the activation level of all
actions is up-to-date. All actions whose activation level is
higher than a threshold θa may be executed concurrently. The
activation level is intended to support the fusion of conflicting
commands.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

66

Propagation of activation energy from goals: An im-
portance is assigned to each goal. This importance is the ini-
tial value for activation energy propagated from this goal. Ac-
tivation energy is propagated independently for each goal and
stored separately in each node. In the beginning of this step
stored activation energy for all goals in all nodes is removed.
If during propagation a node already contains a higher value
for a given goal, propagation for this goal stops at this node to
avoid self-excitation of actions in cycles. If a node contains
a smaller value, then propagation continues, overwriting the
smaller value with the higher one, so that activation energy
always describes the shortest way to a given goal.

At the disjunctive branch at the goal condition to each
AND-splitter activation energy is simply propagated without
changes, because each path will have the same effect on the
goal condition.

At the conjunctive path of an AND-splitter the propagation
for this goal stops. For each path a new sub-goal is created
with a corresponding fraction of the activation energy of the
original goal, because all paths are necessary to achieve the
goal. For each sub-goal the algorithm stores the initiating
goal. This information is used in subsequent AND-splitters
to avoid recursive creation of sub-goals in cycles.

At a monitor the activation energy is simply passed through
from normal output to normal inputs and from inverted out-
puts to inverted inputs. If activation energy is positive, it is
also negated and passed crosswise from normal outputs to in-
verted inputs and from inverted outputs to normal inputs. By
means of this goals and actions can inhibit predecessors that
work against their goal- or preconditions. If one action coun-
teracts another action that in turn counteracts a goal, the first
action must not necessarily support the goal. Therefore neg-
ative activation energy is not passed crosswise.

At AND-mergers activation energy is simply passed
through.

For actions an assumption is made: if the precondition is
met, then the continuation is also met. Later the precondition
may become false while the continuation keeps being true.
Therefore only paths via the precondition has to be pursued in
an action. The activation energy is not simply passed though,
but instead changed according to the former activation level
of this action. If the former activation level is low, meaning
that an action was not executed or that the commands cre-
ated by this action were not considered in command fusion,
preceding actions should receive activation energy to get a
chance to make missing preconditions true. If the former ac-
tivation level is high, this action was already executed and the
work of preceding actions is no longer necessary. To achieve
this, the passed activation energy is multiplied with the in-
verted former activation level of an action and a decay factor
fb to also consider the increasing distance from the goal.

Propagation of activation energy from formerly execut-
ing actions: Actions that were executed for a while accu-
mulate activation energy (see below) separately from the en-
ergy received from goals. When execution of an action stops,
the accumulated activation energy is spread to its successors.
This makes sure, that actions on paths in the network are pre-

ferred, that originates in actions that already have spent time
and effort in achieving a goal.

The propagation process is similar to that for activation en-
ergy from goals. But now it starts at actions and moves for-
wards to goals. In the beginning of this step stored activation
energy for all actions in all nodes is removed. Again, acti-
vation energy is split according to the originating action and
stored separately in each subsequent node. In AND-mergers
activation energy is not split, in opposite to activation energy
originated by goals in AND-splitters. This is because goals
represent a state to be achieved in the future and activation
energy from formerly executed actions represents a state in
the past. Whereas in calculation and distribution of activa-
tion energy from goals optional and parallel paths has to be
distinguished, for activation energy distributed from actions
this is not necessary, because always actions that are closest
to goals will be preferred to actions on paths leading to this
closest action.

If during propagation a node already contains a higher
value for a given action, propagation for this action stops at
this node to avoid self-excitation of actions in cycles. If a
node contains a smaller value, then propagation continues,
overwriting the smaller value with the higher one, so that ac-
tivation energy always describes the shortest way to a given
action. In monitors values are passed through only parallel;
no negative value is created. So actions that continue work on
a path to a goal gets some advantage over other action. But
actions that are not part of this path do not get a disadvantage.

Updating of activation level: To calculate the activation
level of an action, the value of its precondition and of its con-
tinuation has to be considered, as well as the energy received
from goals and predecessors.

The current values of all monitors belonging to the AND-
splitters of a precondition have to be calculated. For each
AND-splitter a result is calculated by multiplication of the
monitor values. So an AND-splitter will only have a high
result, if all monitor values are also high. The results of the
AND-splitters have to be combined to form the value of the
precondition. Using the function ⊕(a, b) = 1 − [(1 − a) ·
(1− b)] with max(a, b) ≤ ⊕(a, b) ≤ 1 the number of AND-
splitters with a high value can be considered. In the same way
the continuation value can be calculated.

It is possible that an action receives more than one fraction
of activation energy from the same goal, possibly via sub-
goals. Some of these values are positive, denoting a path
that leads to this goal. Some of them can be negative, de-
noting a path of actions that works against this goal. Using
the ⊕-function a form of sum for all positive values can be
calculated as well as a sum for all negative values (a negative
value n has to be inverted first: n̄ = 1 + n). The ⊕-function
has the special property that a, b ≤ ⊕(a, b) ≤ 1, so adding
two values will yield a higher value, but the sum will never
exceed 1. Then for one goal a result can be determined by
subtracting the sum of negative values from the sum of posi-
tive values. To get a result for all goals that distribute energy
to this action, the results for each single goal are summed up
and divided by the total number of goals; goals that do not dis-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

67

tribute energy to this action are also counted. So in the whole
network the denominator is the same and calculated results
are comparable independently from the number of goals that
are connected to a given node.

Also from predecessors more than one fraction of activa-
tion energy could have been received. Using the ⊕-function
a form of sum can be calculated for these.

The activation level of an action is finally determined con-
sidering three conditions:

• The precondition, the continuation, or both has to be
true.

• The closer the effect of an action is to one or more goals,
the more important this action becomes.

• The more time and effort was spent by predecessors, the
more important this action becomes.

So the maximum of precondition and continuation is calcu-
lated and multiplied with the maximum of the sums of activa-
tion energy received by goals and predecessors. To remove
case differentiation from formulas, the maximum function
may be replaced by t(a, b) = an+bn

0.12n+an−1+bn−1 ≈ max(a, b)
with n ≥ 2.

Accumulating activation energy: Two values are calcu-
lated to handle accumulated activation energy: an accumula-
tor storing already accumulated activation energy during ac-
tion execution and a forwarder storing activation energy that
is to be distributed through the network after the execution of
an action has ended. The activation level of an action is used
to weight between accumulating and forwarding.

Let a be the current activation level of an action and m
its accumulator. Then its forwarder value is calculated as
fc · (1 − a) ·m. The more the action becomes inactive, the
more accumulated activation energy is supplied for distribu-
tion. Distribution is slowed down by a decay factor fc.

The accumulator m is the sum of two parts. First, it con-
tains the remaining part that was not distributed by the for-
warder: 1 − (fc · (1 − a) · m). Second, it contains the dif-
ference between its current value and the current activation
level, if the latter one is greater: fd · (t(a,m) −m). Again,
adjustment to the current activation level is slowed down by
a factor fd. So m will rise if an action starts execution and
it will decrease, if an action ends execution and activation
energy is distributed via the forwarder value. In both cases
changes of m will be delayed.

3.3 Tests
In figure 5 the results of three tests are shown. Activation en-
ergy is distributed through three networks based on the prob-
lematic cases from figure 1 and 2. The tests yield that the
activation energy received by actions now complies with the
length of paths to goals.

In the upper part a network with two goals 1 and 2 is
shown. Action a receives activation energy via two paths
only from goal 1. Because there is one intermediary action
between action a and goal 1 and there are two goals in the net-
work, its received activation energy is 1.0−1·0.1

2 = 0.45. Ac-
tion b receives activation energy via two paths from both goals

a

31

b

321.0|--- ---|1.0

---|1.01.0|---

0.9|--- 0.9|0.9

0.5 0.5

0.90.45

3

dc 1.01.0

1.0

4

e

5

f

1.0|---|---|---

1.0|---|---|---
0.5

0.9|---|---|---
0.45

0.8|---|---|---
0.4

0.7|---|---|---
0.35

---|1.0|---|---

---|1.0|---|---
0.5

---|---|0.45|---
0.225

---|---|---|0.45
0.225

---|---|---|0.35
0.175

---|---|0.35|0.25
0.3

Figure 5: Distribution of activation energy originated by
goals. At the top: actions contributing to one and to two
goals; in the middle: actions inside and outside a cycle; be-
low: introduction of sub-goals. Activation energy for each
goal is shown separated by a vertical bar (’|’). At actions the
calculated sum of activation energy is also shown below a
horizontal bar.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

68

1 and 2. Because there are also intermediary actions on both
paths, the received activation energy is 1.0−1·0.1

2 + 1.0−1·0.1
2 =

0.9. So action b is preferred to action a because it works to-
wards two goals, whereas action a only works towards one
goal.

In the middle a network with a cycle is shown. Although
action d is connected to goal 3 directly and indirectly via the
cycle, the same amount of activation energy is distributed to
it as to action c. So self-excitation is prevented.

The lower part shows a network with two goals 4 and 5,
two unnamed sub-goals, and two action e and f . Distribu-
tion of activation energy from goal 4 to action e is straight-
forward: because of three intermediary actions activation en-
ergy is 1.0−3·0.1

2 = 0.35. Distribution of activation energy
from goal 5 directly stops at the first action and is split into
two sub-goals, each with the halved and decayed value. Then
distribution of activation energy continues for each path sep-
arately. In action f both paths are merged and activation en-
ergy is calculated as 0.3. So even if each single path from
action f to goal 5 is not longer than the path from action e
to goal 4, action f receives a smaller amount of activation
energy than action e, because the paths are not optional.

4 Pattern description: Hierarchical
Activation Spreading

In this section a guideline is given to use the proposed al-
gorithm to solve an action selection problem. For this pur-
pose an established technique from software engineering is
applied:

When constructing complex software systems develop-
ers are often confronted with problems that can be solved
with approved solutions. These solutions are called patterns
[Gamma et al., 1995]. Related patterns can be organized in a
network, a so called pattern language.

Patterns have been described for several domains like con-
currency, distributed systems, real-time systems, and robotics
[Brugali, 2007]. In the following a pattern for action selection
is proposed. It is intended to contribute to a pattern language
for robotic systems. For description a shortened form of the
schema proposed by Buschmann et al. is used [Buschmann et
al., 1996]:

Context: An action selection system for a robot should be
set up that allows to combine pre-planned action sequences
with actions selected by emergence based on the current situ-
ation.

Problem description: Four issues (forces) influencing the
solution have to be considered:

In a robotic system in the majority of cases pre-planned
action sequences can be provided by developers. Even if
there exist several methods to learn those sequences, provid-
ing them to the system will dramatically speed up develop-
ment.

If an action sequence ends, the action selection mechanism
has to take a decision on how to continue. Both, achievement
of goals and formerly spent effort have to be considered.

Also the end of one action sequence and the beginning of
the next may overlap. The action selection mechanism should
smoothly crossfade between both sequences.

Often there are background tasks that have to be activated
fast in tricky situations. For example, obstacle avoidance has
to be taken care for only if there is an obstacle. But often the
finding of obstacles can not be considered in advance. There-
fore obstacle avoidance has to be part of all tasks.

Solution: Use the proposed algorithm. Pre-planned action
sequences can be described by paths towards a goal and by
considering different states by changing the importance of
goals. To decide between alternative paths, distance to goals
as well as effort spent by formerly executing actions is taken
into account. The algorithm allows to execute more than one
action at the same time and provides an activation level per
action, so that output of concurrently executing actions can
be superimposed. Also several system states may be active
at the same time to run a main task concurrently to several
background tasks.

Implementation: To construct an action selection system
based on the described algorithm carry out the following
steps:

Step 1: Decompose the robot’s task into situations. Here
a situation is described by the fact that the state of the robot in
this situation differs significantly from the state of the robot in
another situation. Two possible situations could be the robot
being inside a room or outside. Another example is the robot
being far away from an important object or near to it.

Step 2: Decompose each situation into different aspects.
An aspect describes a subtask the robot has to pursue concur-
rently to other subtasks. For example, one aspect of a situa-
tion could be to make the robot head for an object. Another
aspect in the same situation would be to make the robot avoid
obstacles on its way to the object.

Step 3: For each aspect define a goal that supplies the
network with activation energy. The goal needs to be con-
nected to a set of monitors that describe the goal condition.
Instead of creating one monitor that checks the full goal con-
dition try to create smaller monitors that checks parts of the
goal condition and combine them with AND-splitters. Doing
so will improve re-use.

Step 4: For each aspect create at least one sequence of
actions that forms a path towards the goal. Each action needs
monitors to check its precondition and continuation. As in
step 3, try to create simple monitors and combine them using
AND-splitters.

An action may compute its commands with the help of its
continuation monitors. For this purpose the monitors not only
have to provide a truth value, but also a measure for the dis-
tance between the current robot state and the desired one.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

69

Based on these measures servoing commands can be calcu-
lated.

Step 5: For each situation decide about the importance of
its constituting aspects. Does all aspects have the same impor-
tance? Or is one more important than others? The achieve-
ment of which goal signals that the situation has changed?

Step 6: Use the results of step 5 to create internal moni-
tors and internal actions that take charge of setting importance
of goals adequate for the current situation. Through this, as-
pects needed for a situation respectively their goals will be
activated, whereas other aspects that are not needed at the
moment will be deactivated.

Effects: The proposed pattern leads to the following ad-
vances:
• Developers are free to decide, which parts of the ac-

tion selection system should be provided in advance and
which parts should constitute by emergence during op-
eration.
• Action selection is modular, because the mechanism is

based on nodes organized in a network. Several basis
networks may be combined into a complex network.

The proposed pattern entails the following disadvantages:
• The more emergent properties of the algorithm are used,

the more difficult becomes the prediction of action se-
lection.
• Also concurrent execution of actions and fusion of con-

flicting commands complicate the prediction of action
selection.

5 Conclusion
An algorithm has been described that allows to combine
emergent action selection with hierarchical finite state ma-
chines. Tests have shown that the proposed changes of the
original activation spreading mechanism lead to the desired
results. The utilization of the algorithm was outlined in a de-
scription of a pattern.

Although parts of the method use emergence to cope with
new and unknown situations, still a lot of information has to
be provided by the developer. Weng et al. have described the
necessity for a complex robotic system to autonomously de-
velop its mental structure [Weng et al., 2001]. This is also ref-
erenced as epigenetic robotics, because changes of the robotic
software system take place during operation, analog to na-
ture, where learning takes place parallel to ontogeny based
on genes. The proposed algorithm supports this development
of mental structures by means of changes to the structure of
the activation network. Batory et al. describe a framework
that allows to extend existing systems step-wise [Batory et
al., 2004] using mechanisms known as feature-oriented pro-
gramming.

Future work aims at utilization of feature-oriented pro-
gramming for the proposed action selection algorithm to
achieve autonomous development of mental structures epi-
genetically.

References
[Batory et al., 2004] Don Batory, Jacob Neal Sarvela, and

Axel Rauschmayer. Scaling step-wise refinement. IEEE
Transactions on Software Engineering, 30(6):355–371,
2004.

[Brugali, 2007] Davide Brugali. Stable analysis patterns
for robot mobility. In Davide Brugali, editor, Software
Engineering for Experimental Robotics, 30, pages 9–30.
Springer, Berlin, Germany, 2007.

[Buschmann et al., 1996] Frank Buschmann, Regine Meu-
nier, Hans Rohnert, and Peter Sommerlad. Pattern-
Oriented Software Architecture: A System of Patterns, vol-
ume 1. Wiley & Sons, Hoboken, NJ, USA, 1996.

[Decugis and Ferber, 1998] Vincent Decugis and Jacques
Ferber. An extension of Maes’ action selection mecha-
nism for animats. In Proceedings of the fifth international
conference on simulation of adaptive behavior on From
animals to animats, pages 153–158, Zürich, Switzerland,
17.-21. August 1998 1998.

[Dorer, 1999] Klaus Dorer. Behavior networks for contin-
uous domains using situation-dependent motivations. In
Proc. 16th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI), pages 1233–1238, Stockholm, Sweden, 31. Juli bis
6. August 1999 1999.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns – Elements of Reuseable Ob-
ject Oriented Software. Addison Wesley, München, Ger-
many, 1995.

[Heumüller et al., 2009] Marvin Heumüller, Jens Hoefin-
ghoff, Michael Korn, and Daniel Pinske. Praxisprojekt
2008 - Gruppe Aktivierungsnetzwerk. Internal report,
Lehrstuhl Intelligente Systeme, Universität Duisburg-
Essen, Duisburg, Germany, 2009.

[Maes, 1990] P. Maes. Situated agents can have goals.
Robotics and Autonomous Systems, 6:49–70, 1990.

[Pirjanian, 1998] Paolo Pirjanian. Multiple Objective Action
Selection and Behavior Fusion using Voting. PhD thesis,
Department of Medical Informatics and Image Analysis,
Aalborg University, Aalborg, Denmark, 1998.

[Tyrrell, 1994] Toby Tyrrell. An evaluation of Mae’s bottom-
up mechanism for behavior selection. Adaptive Behavior,
2(4):307–348, 1994.

[Weng et al., 2001] J. Weng, J. McClelland, A. Pentland,
O. Sporns, I. Stockman, M. Sur, and E. Thelen. Artificial
intelligence. Autonomous mental development by robots
and animals. Science, 291(5504):599–600, 2001.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

70

Coverage Under Dead Reckoning Errors: A Hybrid Approach

Victor Shafran, Gal A. Kaminka, Sarit Kraus
Bar Ilan University

{shafrav,galk,sarit}@cs.biu.ac.il
Alcherio Martinoli

Swiss Federal Institute of Technology Lausanne
alcherio.martinoli@epfl.ch

Abstract
Coverage is a task, where a robot is to move about
a given a target area until every point in it is visited.
Many efficient coverage algorithms cannot be used
in practice, because they assume accurate move-
ments by the robot; unfortunately, real robots have
navigational errors. A standard costly solution is
to utilize a robot that continuously localizes, so as
to make course corrections. In this work we present
TRIM SAIL , a novel hybrid coverage algorithm that
takes as input an exact-movement coverage algo-
rithm, and a maximal dead-reckoning error bound.
It optimizes use of the exact-movement algorithm,
so as to execute its coverage plan while minimiz-
ing movement and localization costs. TRIM SAIL
guarantees complete coverage, even under dead-
reckoning errors. We present several variants of
TRIM SAIL and demonstrate their efficacy in ex-
periments using data collected from real robots.

1 Introduction
Coverage[4] is a canonical robotics task, where robots are
given a target work area, and move about the area until ev-
ery point in the area is covered by a coverage tool associated
with each robot. This tool is assumed to be the robots’ sen-
sors or specific actuator. There exist a number of elegant
and efficient algorithms for single- and multi-robot cover-
age, that all assume accurate and exact movements by the
robot. Among these we include essentially all grid-based
and cell-decomposition methods, that divide the target area
into smaller cells.[14; 10; 5; 9; 8]. These algorithms out-
put a coverage plan, which—if followed without movement
errors—results in complete coverage of the work area.

Unfortunately, real robots have navigation errors—called
dead reckoning errors[2], which prohibit the direct use of
exact-movement algorithms. The problem is that accumu-
lating position errors cause the robot to drift away from its
planned trajectory. There are several task-independent ap-
proaches to tackling dead-reckoning errors: Calibration or
mechanical means[2]; compensation by using relative lo-
cations of multiple robots[11]; or using a hybrid system
which executes the exact-movement algorithm’s coverage
plan while continuously executing localization procedures
(e.g.,[12; 7; 3; 13]) to correct the motion errors. Coverage
presents a unique challenge and opportunity related to dead-

reckoning, which is not addressed by task-independent meth-
ods. On one hand, coverage requires more accurate move-
ments; unlike other navigation tasks, when a robot is tocover
some area betweenA andB, each point in its trajectory must
be covered. On the other hand, if the coverage tool is suf-
ficiently large, then some motion errors can be ignored, as
long as the points on the trajectories are within the area of the
coverage tool.

We present a novel hybrid coverage algorithm, called
TRIM SAIL . TRIM SAIL takes as input an exact-movement
algorithm, the coverage tool size, and a maximal dead-
reckoning error bound. It optimizes use of the exact-
movement algorithm, so as to execute its coverage plan while
minimizing localization checks and corrections, i.e., mini-
mizing movement and localization costs (e.g., in terms of
time and battery). Given the error bound, TRIM SAIL guar-
antees complete coverage, even under dead-reckoning errors.
We present several variants of TRIM SAIL , including a worst-
case variant, and average-case heuristics to reduce costs.

To evaluate TRIM SAIL , we experiment using data col-
lected from real robots. We show that the analytical pre-
dictions for execution costs match the actual performance
of the robot. We additionally show that all versions of
TRIM SAIL outperform a task-independent hybrid approach,
in which localizations are continuously performed to correct
dead-reckoning errors. Finally, we show that TRIM SAIL ’s
performance is not sensitive to cost estimates—thus even if it
uses incorrect estimates as to the movement and localization
costs, it will still perform well in practice.

2 Related Work
Early investigations of dead reckoning explored mechanical
methods that reduce errors, a-priori by mounting additional
specialized hardware and calibration of the robot to reduce
systematic odometry errors[2]. However, dead-reckoning
errors cannot be completely eliminated. There are non-
systematic errors that are caused by environmental uncertain-
ties, e.g., wheel slippage.

Increasingly, probabilistic methods[12; 7] are used to carry
out the process of fusing information from sensors, over time,
to reduce the localization errors (which otherwise accumulate
with movement). These technique successfully reduce odom-
etry error by comparing the data obtained from the sensors in
a different point of time, taking into account the movements
of the robot and the noise in the readings. They also utilize

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

71

absolute location information (e.g., from GPS), if available.
In general, such methods require significant resources, and

may also interfere with the robot’s operation. For instance, in
the RoboCup AIBO soccer league, the robots have to physi-
cally stop tracking the ball and the opponents, in order to free
the camera to identify landmarks for localization. Our work
thus focuses on optimizing the use of localization procedures.
In particular, our work attempts to schedule localization re-
quests during coverage tasks, so as to reduce costs.

An important motivation for our work is the prevalence of
exact-motion coverage algorithms that are highly efficient,
yet assume no dead reckoning errors. Choset[4] provides
a survey of coverage algorithms. The Boustrophedon cover-
age algorithm is an efficient method, which relies on perfect
localization[5; 9]. Spanning Tree Coverage (STC)[8] is an-
other good example. STC-based algorithms divide the work-
ing area into cells of size equal to the robot tool, and build
a Hamiltonian cycle that goes through all cells. While STC-
based algorithms are efficient and easy to implement, they as-
sume zero dead-reckoning errors, and fail in robots that have
restricted capabilities[6].

Simultaneous Localization and Mapping[13] is a related
task in which robots are required to map an unknown area,
while also overcoming localization errors. The process re-
quires making fusing sensory readings over time, and this
puts additional constraints on the movements of the robots,
which are not present in coverage. The techniques presented
here do not target mapping.

3 Dead-Reckoning in Coverage
We restrict ourselves tooffline complete coverage, where a
map of the work areaW , of sizeM ×M , is given, and the
algorithms seek to guarantee that a robot visits every pointin
W . We focus on grid tessellation of the work-area, though
in principle the techniques can be extended to other regular
tessellation as well.

The robot’s tool size isD × D. Thus, when placed at a
point p in the work-area, the robot covers a square of size
D × D, whose center is atp. The robot is assumed to be
omnidirectional, or alternatively, be capable of moving for-
ward and turning in place. We are given the angleα, which is
the maximal deviation due to motion error (either left or right
of the direction of the movement) as the robot moves in a
straight line of a unit distance. The robot has a cost associated
with a distance it travels, denoted byCdrive for each unit dis-
tance. This cost abstracts real-world cost components, such
as execution time, battery usage, etc. Table 1 summarizes the
notation used in this work.

Now, suppose we have an exact-motion coverage algo-
rithm, denotedAlgexact. This algorithm takesW andD as an
input and computesa coverage plan—an ordered sequence
of movements and heading changes (turns), which take the
robot through cells, to completely coverW . Denote bydist1
the distance the robot travels in order to perform this task.
Then, the total cost of this coverage task would be equal to
CAlgexact

= Cdrive · dist1. If D grows, the robot cover more
area in each one of the steps. As a result, the robot needs to
travel less to cover the environment, under the assumptions
that its movements are accurate.

Notation Definition
M ×M The size of the work areaW
D ×D The size of the tool coverage

α The dead reckoning error bound
Algexact The exact-motion coverage algorithm
Cdrive The cost of drive
Cloc The cost of one active localization

Ctotal The total cost of the algorithm
q The maximal localization precision error

Table 1: Notations used in this work.
However, dead-reckoning errors interfere in executing the

coverage-plan. A robot blindly following the sequence of
moves may not go through the intended cells, because dead-
reckoning errors will cause its actual course to deviate.

Thus to execute the coverage plan, the robot must use lo-
calization procedures to assert its position on the intended
trajectory, and to make corrections if necessary. We refer
to this process aslocalization. We abstract away from the
actual method of localization, and consider only the cost of
this operation—in terms of time and battery power—which
is denotedCloc. In addition, localization has only a limited
precision, bounded byq ≪ D. If robot is localized at some
positionp, all we know is that robot stays in a square of size
q × q that is centered atp.

The number of localizations made during coverage is de-
noted byN . When the robot deviates, it accumulates the ad-
ditional travel distance. This accumulated distance (which
includes course corrections) is denoted bydist2. Then, the
total cost of the algorithm is given by:

Ctotal = Cdrive · dist2 + Cloc ·N (1)
To minimize this total cost (Eq. 1), the robot must carefully

balance its use of localization. When such localization checks
are relatively expensive (e.g., in the RoboCup AIBO league,
where robots must stop tracking the ball in order to local-
ize), increasing the number of localization checks (N) signif-
icantly increases overall costs. On the other hand, reducing
N too much requires larger corrections after each localiza-
tion, and thus increasesdist2, the travel distance including
deviations and their correction. We do this by considering the
error boundα, and its relation toN .

Assuming an omnidirectional robot, we address movement
in straight lines in arbitrary headings1. Without loss of gen-
erality, suppose that the path of the robot is in the direction
of the x-axis. The ideal robot, without dead reckoning er-
rors, will simply move in a straight line along the x-axis. A
realistic robot will diverge from the straight line, with the ac-
cumulating dead-reckoning errors accelerating its departure
from the x-axis.

Note, however, that localizations—and subsequent
corrections—are notconstantly required, i.e., are only
required at some key locations. Suppose the size of each cell
in the grid isd, 0 ≤ d ≤ D − q. Then the straight line that
Algexact generates goes through a number ofd × d-sized

1This is equivalent to assuming error-less turns in a robot that can
move forward and turn in place. The relaxation of this assumption is
straightforward, e.g., by requiring the robot to localize (and correct
its position) with every turn.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

72

cells. But because its coverage areaD×D is actually greater
than d × d, it can in fact allow some deviation from the
intended course. For instance, suppose the robot is to cover
cells of sized × d (d = D

2). The robot can deviate byD4
along the y-axis and still cover the cells (Figure 1).

Robot Sensing Area

Step 1

Dd

(C
o
rr
id
o
r
th
a
t
s
h
o
u
ld
 b
e
 c
o
v
e
re
d
)

Robot Sensing Area

Step 2

Robot Sensing Area

Step 3

Robot Sensing Area

Step 4

Robot moving direction (referred as x-axis)

Figure 1: Example of robot motion which covers all cells,
while still deviating.

This example presents an opportunity. We can control
the value ofd (the size of the grid used by an exact-motion
coverage algorithmAlgexact), such that it optimizes the use
of localizations to minimize total cost. A hybrid algorithm
would schedule localization actions (and their corrections) for
Algexact’s coverage plan, augmenting it by periodic localiza-
tion actions (and subsequent corrections, as necessary), and
resulting in a complete coverage, at a minimal cost.

4 A Hybrid Coverage Algorithm
In this section we present an algorithm that utilizes a given
grid-cell size parameterd, to provide complete coverage un-
der dead-reckoning, using localizations only when necessary.

The TRIM SAIL algorithm (Algorithm 1) takes as input the
exact-motion coverage algorithmAlgexact; the grid-size pa-
rameterd; the robot coverage tool sizeD; the work areaW ;
andα, the maximal dead-reckoning error bound (this assumes
the left and right error bounds are equal; this assumption is
relaxed in the experiments). It executesAlgexact to create a
coverage plan, and then executes the coverage plan while in-
terleaving localization and course-corrections actions,as nec-
essary. This results in movements as in Figure 1.

Algorithm 1 TRIM SAIL (W, d, D, l, α, Algexact)

1: CP ← Algexact(W,d){Exact-motion coverage plan}
2: for all Plan stepstp ∈ CP (in order)do
3: if stp is a turn or heading changethen
4: executestp (and localize until pose is correct).
5: else { stp is a corridor}
6: while corridorSq is not covereddo
7: (x, y, φ)← Localize()
8: if |Sq

⋂
Sqrobot| = d× d then

9: (r, δ)← CALCULATE (d,D, α, x, y, φ)
10: Change heading by angleδ
11: Set robot to travel distance ofr.
12: else back-track until|Sq

⋂
Sqrobot| = d× d

The algorithm first calls onAlgexact to receive a coverage-
plan, which assumes no dead-reckoning errors (line 1). This
coverage plan is an ordered sequence ofturn (heading change
for omnidirectional robots) andcorridor steps, defined as for-
ward movement of some length. For each plan step, TRIM
SAIL executes necessary localizations. Turns are executed in
lines 3–4). For corridor steps, it interleaves calls to the lo-
calization action LOCALIZE() (line 7) with short movements
(lines 10–11), whose angle and distance are computed in

CALCULATE (), discussed below. TRIM SAIL continues this
interleaved execution until the corridor is completely covered.

The robot pose (in the 2D area) is defined by three param-
eters(x, y, φ), which can be read by calling LOCALIZE().
x, y define the robot position, whileφ defines the robot yaw
(heading). We assume LOCALIZE() returns localization in-
formation with a precision defined byq.

The interleaving condition (line 8) checks whether the
robot is still covering the corridor, or has possibly moved out-
side of it. The area that the robot currently covers is denoted
by Sqrobot, and the corridor (of widthd) is denoted bySq,
|Sq| denoting the size of the area. If|Sq

⋂
Sqrobot| = d × d

then the robot continues to cover the defined corridor. If
|Sq

⋂
Sqrobot| < d× d then the robot deviation is too big

and there is some portion of the corridor which is not cur-
rently covered. In this case, the robot needs to back-track to
its previous location to re-cover the corridor (line 12).

CALCULATE (Algorithm 2) calculates the maximum dis-
tancer and heading-changeδ the robot can travel until the
next localization is required, under the assumption of the
maximal error boundα. Using CALCULATE ensures that
|Sq

⋂
Sqrobot| = d× d is always true, and line 12 in Al-

gorithm 1 is never reached. However, line 12 will be used
whenα is heuristically estimated (Section 5). Theorem 4.1
asserts the correctness and completeness of TRIM SAIL .

Algorithm 2 CALCULATE (d, D, l, α, x, y, φ)

1: m← cos 2α(|y|+ 0.5(D − l − d)) + 0.5(D − d)− |y|
2: n← sin 2α(|y|+ 0.5(D − l − d))
3: θ ← tan−1(m

n
)

4: δ ← π
2 + φ− θ − α, butδ ← −δ if y < 0.

5: r ← |y|+0.5(D−l−d)
cos θ

6: returnr, δ

Theorem 4.1 If |Sq
⋂

Sqrobot| = d× d holds at the initial
position of the robot, then Algorithm 1 achieves complete cov-
erage of the environment.

Proof Not shown for lack of space.

The following corollary is used in Section 5. It is used in
alternative methods for determiningd, which affects the cost
of the coverage.

Corollary 4.2 For a distancex planned byAlgexact, a robot
using Algorithm 1 travels the distancer ≤ x

cos 2α
.

5 Reducing Localization Cost
Some of the parameters to TRIM SAIL can be arbitrarily set
(d, provided toAlgexact, and the error boundα). Larger val-
ues ofd will result in smaller sequences of moves, but re-
quire more frequent localizations (N increases). Smallerd
values allow for less frequent localizations (smallerN) but
increase the correction distance. We first analytically deter-
mine the optimal valuedmin for d, based on the maximal
dead-reckoning errorα, defined earlier. We then discuss esti-
mating an average-cased, which would work well in practice.

Choosing d: Worst Case Analysis. Since the size of the
map isM × M , the number of cells of sized × d is M2

d2 .
Under assumption of no errors, a robot travels distanced for

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

73

each cell; the total distance the robot travels is thereforeM2

d
.

Based on Corollary 4.2, using TRIM SAIL to overcome errors,
we can conclude that the total distance including corrections
is bounded by M2

d·cos 2α
. Also, the total number of localizations

is bounded by M2·sin 2α
d·(D−d−l)·cos 2α

.
DenoteD′ = D−q. We extend Equation 1 and write down

the expression for the total cost of the robot’s work:

Ctotal = Cdrive·
M2

d · cos 2α
+Cloc·

M2 · sin 2α

d · (D′ − d) · cos 2α
(2)

Equation 2 is a function ofd, which provides an upper bound
on the cost of the coverage under dead reckoning errors. To
determine an optimald, we find d values (in the interval
[0.D − q]) that minimize this function. Note we used a worst
caseα to find dmin value. Because it relies on a worst-case
analysis, this variant of TRIM SAIL never makes corrections,
but may be more expensive than a riskier variant.
Using a Heuristic α Estimate. Observing the dead-
reckoning errors of real robots, we find that most of the errors
are much smaller than the worst case robot errorα. Thus,
we can use smaller values of theα in the TRIM SAIL algo-
rithm (and Equation 2), to reduce the number of localizations.
However, this risks greater travel costs, as corrections might
be required. When the actual error is larger then theα value
used, the robot will need to back-track to the point where its
deviation was less or equal to the one allowed by the current
dmin andα values (Line 12 in Algorithm 1). Thus the selec-
tion of a smallerα value must be carefully balanced against
the cost incurred for corrections.

We estimateα using error data measured on a real robot.
We propose (and empirically compare in Section 6) three
heuristics, all based on analysis of the robot errors. Given
an estimatedα, we utilize the analysis fordmin value (Eq. 2):
—Simple Symmetric Heuristic.Use the mean of the distri-
bution, ignoring the error sign (errors left of heading havea
positive sign, others negative). This mean value is used asα.
—Absolute-Value Symmetric Heuristic.Estimate the mean
from all errors, while ignoring the sign of the error.
—Non-Symmetric Heuristic.Collect the errors of the left and
right sides separately; estimate their means separately.

6 Experiments
In this section we complement the analysis from previous
sections with experiments with data from real robots. The
experiment settings are described in Section 6.1. The first ex-
periment (Section 6.2) compares the data obtained from real
robot with the analytic estimates. Then, we compare the per-
formance of the TRIM SAIL coverage algorithm—and the dif-
ferent heuristic estimates forα—with a naïve hybrid, which
uses localization continuously (Section 6.3). Finally, wecon-
duct sensitivity analysis to examine the robustness of the tech-
niques to inaccuracies in cost estimates.

6.1 Experiment Settings
In order to evaluate the techniques described above, we ob-
tained error data from a Friendly Robotics RV-400 robot, and
used it to simulate the robot’s movements across the hundreds
of robot runs used in the experiments below. To limit re-
liance on the choice of the exact-motion coverage algorithm

Algexact, we chose to use a corridor environment, in which
all algorithms behave similarly. The robot and coverage al-
gorithm settings are described below.
Robot settings. The RV-400 is a commercial vacuum-
cleaning robot, which we fitted with our own control software
(Figure 2). The RV-400 runs its own coverage software, but
this software was disabled in these experiments. Instead, we
run our own coverage algorithms.

Figure 2: An RV-400 robot,
used in experiments.

To generate a data set
of dead-reckoning errors,
the RV-400 robot was
commanded to move in
a straight line, for a dis-
tance of 40cm. This
was repeated 50 times, re-
sulting a data set of 50
measurements. For each
movement, we measured
the error in the robot po-
sition at the end of the
movement, and calculated
the resulting error in heading (angle). This data set forms the
basis for the motion error models that we use in this section.

Evaluating the techniques presented above requires mea-
suring a large number of configurations, multiple times. For
instance, to evaluate the upper bound computed based on
Equation 2, we varyd in the range[0,D− q], and repeat each
setting 50 times. We additionally vary the heuristic technique
used withAlgexact. This would have made for an impractical
number of runs with the physical robots. We therefore chose
to conduct controlled experiments by simulating the move-
ments of the robot, using the motion errors described above.
With each simulated forward movement (each step) required
by the controlling algorithm (TRIM SAIL , Algexact, etc.), we
randomly picked one of the error values and moved the robot
under the influence of this error. The simulated robot’s move-
ments accurately simulate its movements in our lab.

We use 40cm as the basic distance unit in all experiments,
and in reporting all results. The real sensor rangeD was set
to 2 meters (5 40cm units). Using the collected errors, we
found that the maximal robot deviationαmax is bounded by
15.6◦. All experiment results are averages over 50 trials.
Coverage algorithm settings. For simulation purposes we
set the environment area to be equal to400m2 (2500 tiles,
40cm each side). Since the robot’s sensors have a range
of 2 meters, this corresponds to a corridor of 200m by 2m
(500 by 5 of the 40cm steps). The use of a corridor was
motivated by two factors: First, all coverage algorithms be-
have similarly (if not identically) in this environment, and
thus the results would not depend on our choice ofAlgexact.
Second, as TRIM SAIL ’s localization in turns is the same
as any other exact-motion algorithm, this environment high-
lights TRIM SAIL ’s differences with existing work. Unless
otherwise noted, the different costs were set with a 1:5 ratio
(i.e.,Cdrive = 100 andCloc = 500).

6.2 Calculating d: The Basic Technique
We first evaluate the upper bound in Eq. 2 with real-world
data. We compare the cost of using TRIM SAIL (Algo-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

74

rithm 1), with the values obtained from Eq. 2. We vary
the virtual sensor sized. This will ensure that the mini-
mum dmin computed based on Eq. 2 corresponds to the
minimum in the real runs. We setd to 1, 2, 2.5, 3, 3.16
(the dmin value, computed based onα = 15.6◦ in the
data), 3.5, 4, and 4.5 40cm steps. For each one of these
’virtual’ grid sizes, we run a coverage algorithm for 50
times using the error data we obtained from the real robot.

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 1.5 2 2.5 3 3.5 4 4.5

C
os

t to
ta

l

d

Analytical Prediction
Real-world Robot Data

Figure 3: Comparison of running Al-
gorithm 1 with real-world data (av-
eraged over 50 trials), with the pre-
dicted cost obtained from Eq. 2.

Figure 3 presents
the data obtained in
these experiments.
This figure com-
pares the cost func-
tion of Algorithm 1
run in our simula-
tion with the cost
obtained from Eq.
2. It shows that in-
deed the real cost is
bounded by the re-
sults from Eq. 2, by
14% in all the mea-
sured points. The qualitative behavior of both functions is
identical. For both,d = 3.16 is a the minimum.

6.3 Comparing Complete Coverage Algorithms
To establish a baseline for the experiments, we first run
Algexact, as is, to measure its cost and coverage success. Be-
cause there are no localizations,Algexact never turns or trav-
els to correct its location. However, its coverage percentage
is poor; in the different trials,Algexact coverage percentage
ran from 13.5% to 73% of the area, with a mean of 43.25%.

These results demonstrate the impact of violating the
perfect dead-reckoning assumptions of many exact-motion
coverage algorithms. Here, a provably-complete algorithm
fails—by a significant margin—to provide complete coverage
because its motion is erroneous. Many elegant exact-motion
solutions to the coverage problems would suffer from simi-
lar problems. Direct comparison of TRIM SAIL to Algexact

therefore does not make sense:Algexact would fail to provide
complete coverage, which TRIM SAIL provides.

TRIM SAIL hybridizes exact-motion coverage algorithms,
modifying their use in real-world settings, to maintain their
proven properties of efficiency, robustness, etc.while guar-
anteeing 100% (complete) coverage. However, a more di-
rect approach is possible in principle, where an exact-motion
algorithm would simply be used together with continuous
(repeating) localization. For instance, if landmarks are al-
ways sensed by the robot, then the robot can—in principle at
least—run localization procedures without pause, resulting in
continuous error corrections, and complete coverage.

We therefore turn to empirically evaluate TRIM SAIL and
its heuristic variants (Section 5), against a naive use of an
exact-motion algorithm with persistent localization. We com-
pare the following techniques:Algloc, which isAlgexact used
with persistent localization (to create the best possibleAlgloc,
we assume perfect localization);TSmax is the worst-case
TRIM SAIL using the maximal heading error boundαmax;

andTSsimple, TSabs, TSns are TRIM SAIL variants using
the simple-symmetric, absolute-value symmetric, and non-
symmetric heuristics. We remind the reader that these heuris-
tic variants attempt to reduce the number of localizations,at
the risk of added travel distance for corrections.

The three heuristic methodsTSsimple, TSabs, andTSns

all rely on estimating the distribution(s) underlying the er-
ror measurements. To do this, we used standard distribution-
fitting procedures. We found that the results are best fit-
ted by Pearson’s Type 5 distributions, also known asPear-
son5 [1]. The distribution fit was done separately for each
heuristic. The fitted mean (in the case of symmetric heuris-
tics) or means (non-symmetric heuristic) were taken as the
α value(s) used in the algorithms. For instance, for the sim-
ple symmetric heuristic, the fitted distribution had a mean of
αsimple = 1.4703◦.

The results of the comparison appear in Table 2. Each
row corresponds to a single algorithm, and the values in
it are averaged over 50 trials. We use horizontal lines
to distinguish the analytically-motivated algorithmsAlgloc

and TSmax from the heuristic-based algorithmsTSsimple,
TSabs, andTSns. The columns (left to right) provide the
total distance traveled (in units of 40cm steps), the numberof
localization actions, and the distance/localization ratio. The
final column indicates the total cost resulting from using the
algorithm in question. Table 2 leads to several conclusions,
explored below.

Name Distance Number of Dist-Loc Total Cost
Localizations Ratio

Algloc 790.35 251 3.14 204544.98
TSmax 792.15 231.00 3.43 194715.00

TSsimple 1418.09 21.04 67.4 152329.00
TSabs 973.28 33.12 29.39 113888.00
TSns 977.25 34.57 28.27 115010.41

Table 2: A Comparison of coverage results by different algo-
rithms. All algorithms resulted in 100% coverage. Two best
costs are in bold. Results averaged over 50 trials.

First, we see that under the cost ratio defined (100:500),
even the worst-performing variant of TRIM SAIL —TSmax is
better than using the exact-motion algorithmAlgexact with
continuous localization calls (Algloc). The distance traveled
by Algloc is almost the same asTSmax, with a much greater
number of localizations. This is becauseAlgloc makes unnec-
essary corrections. Because it does not consider the geome-
try/size of the coverage tool, it repositions even if the area is
already covered. Thus TRIM SAIL indeed offers a much more
effective hybridization of the original algorithm.

Second, the results reveal a qualitative significant differ-
ence between the analytical method which seeks to guarantee
performance using only the maximal error bound (TSmax),
and the heuristic methods (TSsimple, TSabs, and TSns)
which seek to minimize cost by relying on additional knowl-
edge (here, about the distribution of heading errors). The
heuristic methods significantly outperform their worst-case
counterpart, demonstrating their effective utilization of the
additional knowledge they have. In particular, given that all
three methods relying on our fitting the error distribution to

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

75

the Pearson5 distribution, we believe that this indicates that
indeed this distribution type is appropriate for modeling dead-
reckoning errors. To check this, we also experimented with
other distribution types, and showed that Pearson5 is indeed
superior. We do not provide the details here for lack of space.

Third, while the Absolute Symmetric (TSabs) and Non-
Symmetric (TSns) algorithms are significantly better than all
others, their results are in fact non-distinguishable (two-tailed
t-test results inp = 0.32).

6.4 Sensitivity to Cost Estimations
The distance-localization ratio of the best algorithms (Table
2) is lower than that ofTSsimple, though higher than that of
TSmax. The conclusion is that the results in Table 2 might be
dependent on the actual cost estimates (travel cost and local-
ization cost), which are used in TRIM SAIL . Here, we explore
the sensitivity of the results to errors in the cost estimates pro-
vided to the algorithms.

Ratio−→ 1:10 (0.1) 1:5 (0.2) 1:1 (1)
Name↓ (original)
Algloc 330035.00 204535.00 104135.00
TSmax 310215.00 194715.00 102315.00
TSabs 130448.00 113888.00 100640.00
TSns 132296.12 115010.41 101181.84

TSsimple 162849.00 152329.00 143913.00

Table 3: A Comparison of total costs for each algorithms,
under different travel-to-localization cost ratios. Bestcosts
are in bold.

Table 3 shows the total costs for the different algorithms,
when the travel-to-localization cost ratio is systematically
changed from the original settings (marked, fourth column
from left). First, we note that theTSabs, which we found
earlier to be the best, remains so under extreme changes to
the cost ratio: The result holds from a cost ratio of 1:25 until
a cost ratio of 1:1. Thus one conclusion is that the top per-
forming heuristic technique is in fact extremely robust to cost
estimate errors.

A second important conclusion is reached contrasting the
the top two rows (Algloc and TSmax). We see that TRIM
SAIL provides superior performance to that of the other hy-
brid approach,in all cost ratios. This again demonstrates the
efficacy of the methods we presented in this paper.

7 Conclusions
In this paper we presented TRIM SAIL , a hybrid coverage al-
gorithm (and associated heuristics, geometric optimizations)
for real-world settings. TRIM SAIL takes an exact-motion
coverage algorithm, which assumes no dead-reckoning er-
rors, and uses it to guide angled movements that guarantee
complete coverage of the target work area, while minimiz-
ing the use of localization to that strictly necessary. We pre-
sented an analytical worst-case version of TRIM SAIL , and
three heuristics which further reduce total coverage costs. We
then reported on extensive experiments with TRIM SAIL , us-
ing data collected from the RV-400 robot. The experiments
demonstrated that (1) the analytical methods accurately pre-
dict an upper bound for total costs, and minimum cost, given

robot error bounds and coverage range; (2) the heuristic meth-
ods outperform the analytical methods in the cost ratio cho-
sen; (3) TRIM SAIL variants are not sensitive to errors in
cost estimates; and (4) that the TRIM SAIL algorithmalways
outperforms naive coverage hybridization, where the exact-
motion algorithm is simply coupled with continuous local-
ization. In the future, we hope to explore new heuristic di-
rections which take more risks in terms of completeness of
coverage, but provide reduced costs.

References
[1] M. Abramowitz and I. A. Stegun.Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathe-
matical Tables. Dover, New York, 1964.

[2] J. Borenstein., H. Everett, and L. Feng.Navigating Mo-
bile Robots: Sensors and Techniques. A. K. Peters, Ltd.,
Wellesley, MA, 1996.

[3] A. Burguera, G. Oliver, and J. Tardos. Robust scan
matching localization using ultrasonic range finders. In
IROS-05, pages 1367–1372, 2005.

[4] H. Choset. Coverage for robotics - A survey of recent
results. 31(1–4):113–126, 2001.

[5] H. Choset and P. Pignon. Coverage path planning: The
Boustrophedon decomposition. InInternational Con-
ference on Field and Service Robotics, 1997.

[6] N. Correll and A. Martinoli. Distributed coverage: From
deterministic to probabilistic models. pages 379–384,
2007.

[7] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte
carlo localization for mobile robots. InICRA, pages
1322–1328, 1999.

[8] N. Hazon and G. Kaminka. On redundancy, efficiency,
and robustness in coverage for multiple robots.Robotics
and Autonomous Systems, 2008.

[9] W. H. Huang. Optimal line-sweep-based decomposi-
tions for coverage algorithms. volume 1, pages 27–32,
2001.

[10] F. Preparata and M. Shamos.Computational Geometry:
An Introduction. Springer, 1985.

[11] I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot
exploration of an unknown environment, efficiently re-
ducing the odometry error. InIJCAI97, pages 1340–
1345, 1997.

[12] S. Thrun. Finding landmarks for mobile robot naviga-
tion. In ICRA, pages 958–963, 1998.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

[14] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta. Plan-
ning paths of complete coverage of an unstructured en-
vironment by a mobile robot. InIn Proceedings of Inter-
national Conference on Advanced Robotics, pages 533–
538, 1993.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

76

Bridging the Gap Between Semantic Planning and Continuous Control for Mobile
Manipulation Using a Graph-Based World Representation

Roland Philippsen∗†, Negin Nejati‡, Luis Sentis†
†Stanford Robotics and AI Lab, ‡Stanford Computational Learning Lab

roland.philippsen@gmx.net, negin@stanford.edu, lsentis@stanford.edu

Abstract
We present our ongoing efforts to create a mobile
manipulation database tool, a flexible multi-modal
representation supporting persistent life-long adap-
tation for autonomous service robots in every-day
environments. Its application to a prototypical do-
main illustrates how it provides symbol grounding
to a reasoning system capable of learning new con-
cepts, couples semantic planning with whole-body
prioritized control, and supports exploration of un-
certain and dynamic environments.

1 Introduction
In this position paper, we describe our approach for bridging
the gap between a sensori-motor control framework, devel-
oped at the Stanford Robotics Lab, and a flexible symbolic
teleo-reactive reasoning system, developed at the Stanford
Computational Learning Lab. The context of our research
is to integrate several areas of research in autonomous sys-
tems, employing learning, planning, perception, and control,
to achieve task-oriented whole-body motions for a robot’s
physical interaction in environments shared with humans.

Our position is that the scalability of skills required for au-
tonomous mobile manipulation in everyday environments can
be achieved by combining a reasoning and learning system
built on goal-indexed hierarchical task networks with a con-
tinuous control framework capable of handling physical in-
teraction behaviors, and that this combination requires a rep-
resentation that is rich enough to encompass information rel-
evant to both of these components yet lightweight enough to
act as a “live” model of the world and the robot.

We rely on a smart database that serves as a white-board
between components, in order to (i) ground symbols in the
robot’s low-level sensing and action capabilities, (ii) maintain
and share information relevant to more than one component,
and in the long run (iii) support life-long adaptability of the
robot in changing and uncertain environments.

Figure 1 illustrates the system architecture. The mobile
manipulation database (MMDB) is the central component

∗This work has been supported by the Swiss National Science
Foundation under the Fellowship for Advanced Researchers, grant
number 115346

Figure 1: Overview of the system components implemented
for the proof of concept presented in this paper, with arrows
denoting information flow.

that allows entity translation to be a very lightweight process.
Whole-body control (WBC) implements local continuous-
domain task-oriented behaviors, while Icarus provides sym-
bolic commands based on global goals and the current state
of the world. This architecture is a draft that is strongly in-
spired by the classical three-tiered approach. It serves the pur-
pose of illustrating a proof of concept, but the boundaries be-
tween layers are not strictly defined: Icarus is a teleo-reactive
system that encompasses reasoning and execution, and the
MMDB handles information that pertains to all components
of the system.

Robotics and AI researchers have investigated everyday
manipulation tasks for a long time, and addressing this ap-
plication requires integrating approaches from several sub-
fields. Thus, the amount of related work is quite vast, and
we limit ourselves to an overview of the contributions that
have most strongly influenced our collaboration so far. Re-
lated work is given at the beginnings of the sections present-
ing Icarus, WBC, and MMDB.

Part of the integration challenge stems from differing tech-
nical terms and unstated assumptions. Thus, one of the start-
ing points is to define common terminology, of which we give
a very short summary here.

Tasks can mean either (i) high-level specifications of de-
sired actions expressed in formal logic clauses (in Icarus), or
(ii) a task is a specific facet of continuous control (in WBC).
A goal is a set of states which correspond to a desired out-
come, where the achievement of the goal must be measur-
able. Planning is the process of finding a sequence of ac-
tions to take the system from a known initial state to a spec-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

77

Table 1: Examples of percepts, concepts and skills in Icarus.
Percepts
(object 26 tag window state clean)
(close-to 29)

A concept definition example
((all-windows-clean)
:percept ((object ?window tag window))
:relations ((not (dirty ?window))))

A skill definition example
((clean ?window)
:subgoals ((close-to ?window)
(action-clean ?window)))

ified goal state. Control refers to real-time computation of
actuator commands such that operational constraints are sat-
isfied. Manipulation refers to actions that (i) influence the
arrangement of objects in the robot’s environment or (ii) in-
teract physically with other agents (e.g. helping a person cross
the street). Perception acquires and interprets information
about the environment, yielding information grounded in sen-
sor readings and ranging from low-level geometrical features
to high-level abstract states.

The whole-body controller is not built on formal logic, and
thus it is necessary to define a taxonomy of behaviors it can
execute in order to integrate it with Icarus. This is an ongoing
process, which gives each whole-body behavior a name, lists
what task types it includes (e.g. table 2), specifies the types
and ranges of parameters it accepts (e.g. controller gains, ve-
locity and acceleration bounds), what it’s inputs are (e.g. de-
sired posture, visual feedback), and what kind of output or
feedback it provides to higher levels.

2 Icarus: Reactive Symbolic Planning
An autonomous agent needs the ability to robustly choose
actions that lead to its goal while continuously consider-
ing its changing perceptions of the dynamic environment.
Teleo-reactive programming is a formalism for computing
and organizing actions for an agent that provides this capa-
bility [Nilsson, 1994]. Icarus [Langley and Choi, 2006] is
a cognitive architecture for physical agents with a commit-
ment to teleo-reactive logic programs as the representation
which supports execution and acquisition of complex proce-
dures (figure 2). At each cycle, Icarus perceives the environ-
ment, recognizes situations, and chooses an action based on
the situation and the goal, aided by two knowledge bases: (i)
conceptual knowledge allows recognizing relevant situations
and describes them in a higher level of abstraction, and (ii)
skill knowledge encodes how the agent can affect its environ-
ment. Concepts are encoded as hierarchical monotonic infer-
ence rules with a syntax similar to Horn clauses. Skills are
represented with goal-indexed Hierarchical Task Networks
(HTNs) [Nau et al., 2003]. Each skill is a recipe for decom-
posing a high level task into lower level ones, providing a
partial ordering between them, and specifying a precondition
that needs to be satisfied in the environment before it can get
selected. We chose goal-indexed HTNs as skill representa-
tion because (i) they provide transferable solutions to similar

Figure 2: The Icarus cognitive architecture employs long- and
short-term memories for concepts and skills in order to pro-
duce goal-directed actions that take into account a changing
and uncertain environment.

Figure 3: Icarus uses HTNs for teleo-reactive skill-selection.
Skills are goal-indexed: at the highest level are the global
goals, and primitive skills are leave nodes corresponding to
executable actions.

problems and (ii) they can be automatically acquired. Table 1
provides examples for percepts, concepts and skills.

Once a goal is chosen, Icarus works out the relationship
among different actions and propose a suitable one at each
step (see figure 3). These hierarchies are built by Icarus dy-
namically at each runtime cycle and the skill path is selected
in a top-down manner starting at the skill indexed by the in-
tended goal and rooted in a primitive skill which is applicable
in the current state of the world. This is more scalable than
traditional controller programming: once new behaviors and
goals are added into the system, Icarus can automatically use
them together with the previous knowledge. Icarus keeps the
skill selection path as similar as possible across cycles, but if
a previously achieved goal becomes untrue again, it can in-
terrupt its current activity to re-achieve the older goal.

Goal-indexed HTNs can be time consuming to craft, mak-
ing it worthwhile to investigate automatic ways of acquiring
them [Choi and Langley, 2005], [Nejati et al., 2006]. The
latter introduces LIGHT, an approach for HTN learning by
observing sequences of operators taken from expert solutions
to a problem. By analyzing the solution in the context of
a background knowledge, LIGHT learns skills for achiev-
ing complex tasks, their preconditions, and partial ordering
among their subgoals. It is important to note that the hierar-
chical nature of the learned skills is crucial for scalability as
shown in [Nejati et al., 2006] and that learning flat macros
e.g. [Mooney, 1990] is more equivalent to the finite state ma-
chine approach.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

78

Figure 4: Example WBC behavior for cleaning a vertical sur-
face while maintaining several operational constraints

3 Prioritized Multi-Objective Control:
Executing Complex Behaviors

Choosing a symbolic action does not make a robot move
its motors. The discrete symbolic structure has to be trans-
lated into continuous sensori-motor feedback, and for this we
rely on model-based control applicable to mobile manipula-
tors and humanoid robots. We consider the problem of co-
ordinating the physical behavior of the robot operating in the
complex environment. The robot is required to accomplish
arbitrarily complex tasks, which involve manipulation and lo-
comotion behaviors as well as the handling of environmental
constraints.

In particular, for this work we exploit our work on interac-
tive control of a humanoid robot [Sentis and Khatib, 2005].
This framework leverages potential field control techniques to
address the simultaneous optimization of multiple low-level
criteria characterizing the skills of the robot. It combines the
potential fields from all desired criteria using a prioritized
control hierarchy, producing motion behaviors such that all
criteria can be optimized while satisfying the assigned priori-
ties. Figure 4 illustrates an interactive behavior with multiple
potential fields to clean windows. The criteria designed to
execute this behavior are shown in table 2.

The difficulty of operating in every-day human surround-
ings arises from their inherent complexity and variability. Us-
ing whole-body skills as described above, we address all as-
pects of the motion including both goal-based tasks and con-
strained behaviors. To deal efficiently with constraints we
build models that address the complex contact and topologi-
cal interactions with the environment.

For example, we have recently developed a model called
the virtual linkage model to characterize the contact state of
the robot. Using optimization techniques it enables the de-
sign of internal force behavior and locomotion policies that
comply with frictional and rotational contact constraints.

To implement potential field control strategies, we create
a generalized dynamic model of the robot that relates actua-
tor and body accelerations to generalized control torques as
well as to contact forces with the environment. This model

Table 2: Decomposition for the task shown in figure 4.
Task Primitive Coordinates Control Policy
Contact support internal forces optimal contact
Joint Limits joint positions locking attractor
Self Collisions distances repulsion field
Balance CoM(x, y) position
Right hand Cartesian force and position
Gaze head orientation position
Upright posture marker coordinates captured sequences

provides an effective interface to project artificial potential
fields into actuator space. Working at the torque level and
aided by the dynamic and contact models mentioned earlier,
we create force compliant behaviors that are capable of deal-
ing with unplanned contact events and contact variability in
the environment.

Another important characteristic of the execution layer is
its hierarchical architecture, which is designed to analyze and
handle action conflicts by imposing priorities between the
control objectives. Priorities are used as a mechanism to tem-
porarily override certain non-critical criteria in order to ful-
fill critical constraints. To reinforce the planning process, the
execution framework estimates at runtime the feasibility of
the commanded actions and returns detailed information on
the causes of the conflicts. Aided by Icarus, feasibility infor-
mation is aimed at triggering the replanning process of the
robot’s behavior, which will result in finding alternative paths
that optimize the desired chores.

4 Mobile Manipulation Database
As depicted in figure 1, the role of the mobile manipulation
database (MMDB) is to collect information relevant for the
interaction between the various components of the system,
and to help mediating the data flowing between them. It al-
lows components to retrieve collections of entities matching
some search criteria. For example a path planner could re-
quest all location nodes and locomotion links along with their
associated path costs. However, the MMDB goes beyond
“simple” database operations by using a graph-structure that
naturally encodes multiple semantic aspects of the world, and
providing an event infrastructure that allows components to
be notified when certain types of entities are added, removed,
or changed.

Related work that influenced the formulation of the
MMDB comes from three main sources. The Semantic Spa-
tial Hierarchy of [Kuipers, 2000] is one of the fundamen-
tal contributions allowing to ground an abstract topological
representation of space in the noisy and uncertain sensori-
motor system of autonomous robots. Later work of the same
lab (e.g. [Beeson, 2008]) pursues this line of research, with
aspects of sensori-motor learning increasing in importance.
[Vasudevan, 2008] solves representation of space using a hi-
erarchy of objects and their relationships, in order to support
spatial cognition, and gives a good overview of further re-
lated work. Concerning planning and execution, the works of
[Haigh and Veloso, 1998] and [Veloso et al., 1995] provide
system architectures and planner systems that integrate learn-
ing through knowledge structures that are interpretable across

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

79

Figure 5: Example of a room with doors, windows, and
a charging station, illustrating the graph underlying the
MMDB.

several components. Yet all these contributions are related to
mobile robot navigation or HRI and do not directly allow us
to integrate manipulation using the whole-body control ap-
proach [Sentis and Khatib, 2005].

Intuitively, the MMDB has to (i) provide spatial and func-
tional information about the world, (ii) represent object iden-
tities and connections between regions and objects, and (iii)
allow components to easily store and retrieve information rel-
evant for their functioning (e.g. “retrieve all locations with
links to an object labelled as a cup”). Figure 5 shows an illus-
trative example.

The MMDB contains entities that are either nodes or links.
Each entity has a unique ID, an associated type and tag, and
optional mutable data which are initialized when the entity is
created. Nodes represent pieces of information that are rele-
vant for the robot, e.g. an object node representing a cup that
it is supposed to wash. Links can be directed or bidirectional
and represent relationships between nodes, e.g. a collection
of SIFT features that the robot can use to detect and localize
a cup prior to grasp planning. The ID is essential for sym-
bol grounding, it ensures that the various components “talk”
about the same “thing”, e.g. when Icarus requests locating
object 17, the vision system ends up retrieving the correct set
of SIFT features in order to find that specific cup. The type
and tag are essential for searching the database and filtering
events, they encode an ontology for an application domain.
Data is usually set only for property nodes, it encodes an ac-
tual piece of information, such as a point cloud coming from
stereo vision.

We are aware that there is a large body of work on knowl-
edge bases and ontologies that can be exploited for reasoning
in the domain of autonomous mobile manipulation. At this
early stage of our research, in order to demonstrate that the
overall approach is feasible, we chose to use a simple ad-hoc
ontology, outlined below. However, given that the type of
entities is stored as a string, the MMDB remains ontology-
agnostic, at least for the time being.

The currently implemented node and link types are: lo-
cation, object, object-location, locomotion, agent, geome-
try, and manipulation. Location (e.g. door, window, room)

Figure 6: Snapshot of the MMDB (partial view) after the
robot has cleaned the window represented by node 30. At
this stage, the battery has been depleted to 11% which causes
Icarus to interrupt the window-cleaning task in order to go
and recharge the robot.

permits reasoning about space. Object (e.g. door, window,
charger) is fundamental for modeling, recognition, and ma-
nipulation of objects. Object-location links a region of space
with a physical entity. Locomotion links two regions of space
that are known to be reachable via locomotion from each
other. Agent nodes collect a robot’s internal state informa-
tion as far as it pertains to more than one component. Ge-
ometry properties (e.g. bounding box, length, point-cloud,
mesh) collect metric information about entities, e.g. for grasp
planning or fusion over longer exploration periods. Manip-
ulation properties (e.g. state, rotation axis, maximum forces)
store data necessary for planning or controlling manipulation
tasks.

5 Evaluation in an Example Domain
As a prototypical evaluation scenario, we have chosen to im-
plement a world with rooms, doors, windows, and a charger.
The task of the robot is to clean all the windows, exploring
all rooms and recharging itself as required (all operations use
up some amount of energy). Some of the doors are locked, in
order to verify that failure detection at the WBC level can be
propagated to Icarus. However, integration with WBC is not
yet done, so at this stage we verify the symbol grounding of
geometrical entities by assigning bounding boxes to objects
and simulating controller failures and successes depending on
the location of the robot with respect to these bounds (e.g. it
needs to be close enough to a window to clean it). When a
door to a previously unknown room is opened, the windows
and doors contained in the new room are injected into the
MMDB. Thus, the controller is not aware of any symbols,
Icarus is not aware of any bounding boxes, and the MMDB
provides the translation between the two. The result of clean-
ing a window gets reflected in the manipulation state property
of window objects, which starts out as dirty and transitions to
clean only if the controller succeeded. Similarly, doors can
be in an open, closed, locked, or unknown state.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

80

Icarus is a Lisp program and the MMDB has been proto-
typed in Python. The two are connected using XMLRPC, and
at each step the entire graph is logged, yielding output similar
to figure 6 (after some manual layout adjustments). This ex-
ample demonstrates how MMDB translates between symbols
and geometric entities, how Icarus makes skill selection flex-
ible and scalable (adding door opening skills and exploration
goals are simple additive adjustments that do not require
rewiring any program) and how the window-cleaning task can
be interrupted by battery-charging and then resumed.

6 Conclusions & Outlook
In this position paper we have presented early stages of our
work on a mobile manipulation database and have motivated
this research in the context of autonomously performing tasks
that can be useful in every-day human environments. Sym-
bolic representations and reasoning methods on the one hand
allow to make globally informed decisions and ensure that ex-
ecution is goal-oriented, by “abstracting away” much of the
low-level details in order to make the problem tractable. On
the other hand, continuously controlling the motion of an au-
tonomous robot such that it safely and effectively operates in
physical contact with objects and even humans focusses on
more local details such as real-time control and rigid body
dynamics.

The evaluation we presented demonstrates that two of the
three objectives mentioned in the introduction are presently
fulfilled by the MMDB: (i) ground symbols in the robot’s
low-level sensing and action capabilities, (ii) maintain and
share information relevant to more than one component. Con-
cerning our objective to (iii) support life-long adaptability of
the robot in changing and uncertain environments, we give a
motivating example as outlook: Suppose that the perceptual
apparatus can detect doors but does not provide information
needed for operating it, such as whether it is a sliding or ro-
tating door, or how exactly to grip the handle. WBC provides
sensori-motor exploration to figure out the missing details by
trying out various alternatives. Once the robot has discov-
ered how a particular door can be opened, the relevant data is
stored in the MMDB, attaching this WBC-specific informa-
tion to an entity that is shared between all components. Later,
the robot perceives another door of similar appearance. We
can then use the parameter set of the first door as an initial
guess at how this new door can be opened.

The MMDB provides representational support for system
integration, aimed at fulfilling a specific set of requirements
for a more general problem, namely to expose those parts
of a component’s internal data structures that are needed for
useful interaction between approaches coming from various
sub-fields of AI and robotics. In this position paper, we only
present a prototypical implementation of the MMDB, which
lacks the event mechanisms that shifts the burden of detect-
ing environment dynamics and the action of other compo-
nents into a representational system that has all the required
information at its disposal. For the proof-of concept, the
lack of events is not a limiting factor: the number of nodes
and links is very small, and events are emulated by iterating
over all entities at each step. However, it is already apparent

that these capabilities will promote loose but effective cou-
pling between components. In particular, we are interested in
adding learning at the HTN level, exploration and SLAM at
the geometric and spatial-topological levels, and providing a
rich set of sensory inputs.

One promising direction of future research concerns feed-
ing high-level contextual information from Icarus into the
MMDB. We expect this to help with disambiguating object
perception, and to provide more fine-grained specification of
WBC behaviors. For example, it would be possible to inject
or relax manipulation constraints such as maintaining an up-
right orientation of a container depending on whether it con-
tains liquid or is empty. Exploration of unknown environ-
ments is another application that we feel will benefit from the
MMDB.

References
[Beeson, 2008] Patrick Beeson. Creating and Utilizing Symbolic

Representations of Spatial Knowledge using Mobile Robots. PhD
thesis, The University of Texas at Austin, August 2008.

[Choi and Langley, 2005] Dongkyu Choi and Pat Langley. Learn-
ing teleoreactive logic programs from problem solving. In Pro-
ceedings of the Fifteenth International Conference on Inductive
Logic Programming, pages 51–68, 2005.

[Haigh and Veloso, 1998] Karen Zita Haigh and Manuela M.
Veloso. Interleaving planning and robot execution for asyn-
chronous user requests. Autonomous Robots, 5(1):79–95, 1998.

[Kuipers, 2000] Benjamin Kuipers. The spatial semantic hierarchy.
Artificial Intelligence, 119:191–233, 2000.

[Langley and Choi, 2006] Pat Langley and Dongkyu Choi. A
unifed cognitive architecture for physical agents. In Proceed-
ings of the Twenty-First National Conference on Artificial Intel-
ligence, pages 51–68, 2006.

[Mooney, 1990] R. J. Mooney. A general explanation-based learn-
ing mechanism and its application to narrative understanding.
Morgan Kaufmann, San Mateo, CA, 1990.

[Nau et al., 2003] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Mur-
dock, D. Wu, and F. Yaman. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20:379–404, 2003.

[Nejati et al., 2006] Negin Nejati, Pat Langley, and T. Konik.
Learning hierarchical task networks by observation. pages 665–
672, 2006.

[Nilsson, 1994] Nils Nilsson. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research, 1:139–158,
1994.

[Sentis and Khatib, 2005] Luis Sentis and Oussama Khatib. Syn-
thesis of whole-body behaviors through hierarchical control
of behavioral primitives. International Journal of Humanoid
Robotics, 2(4):505–518, 2005.

[Vasudevan, 2008] Shrihari Vasudevan. Spatial Cognition for Mo-
bile Robots: A Hierarchical Probabilistic Concept-Oriented Rep-
resentation of Space. PhD thesis, ETH Zürich, Switzerland,
2008. Diss. ETH no. 17612.

[Veloso et al., 1995] Manuela M. Veloso, Jaime Carbonell, Alicia
Pérez, Daniel Borrajo, Eugene Fink, and Jim Blythe. Integrat-
ing planning and learning: the prodigy architecture. Journal of
Experimental & Theoretical Artificial Intelligence, 7(1):81–120,
1995.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

81

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

82

Approaches to Learning for Hybrid Dynamical Cognitive Agents

Eric Aaron and Henny Admoni
Department of Mathematics and Computer Science

Wesleyan University
Middletown, CT 06459

Abstract

As a foundation for goal-directed behavior, a hy-
brid agent’s reactive and deliberative systems can
share a single, unifying representation of intention.
In this paper, we summarize a framework for hy-
brid dynamical cognitive agents (HDCAs) that in-
corporates a single representation of dynamical in-
tention into both reactive and deliberative struc-
tures of a hybrid dynamical system agent model,
and we introduce the first proposed approaches
to learning for such intention-guided agents. The
HDCA framework is based on ideas from spread-
ing activation models and belief-desire-intention
(BDI) models: Intentions and other cognitive el-
ements are represented as interconnected, con-
tinuously varying quantities, employed for goal-
directed intelligence by both reactive and deliber-
ative processes. Methods for learning that modify
interconnections among an HDCA’s cognitive el-
ements —such as Hebbian associations based on
co-active elements, and belief-intention learning of
task-specific relationships— can therefore improve
goal-directed performance without additional re-
liance on deliberation. We also present simple
demonstrations of agents that learned geographic
and domain-specific task relationships in a virtual
grid world, and we discuss limitations and potential
extensions of our approaches to HDCA learning.

1 Introduction
In hybrid reactive / deliberative agents, if the reactive and
deliberative levels share a single, unifying representation of
intention, goal-directed intelligence can be effectively dis-
tributed over both levels. Reactive-level learning could there-
fore improve intention-guided behavior without entailing ad-
ditional reliance on deliberation for intelligent performance.

As an example, consider three hybrid agents completing
tasks in a simulated grid city, running several errands (e.g.,
deposit a check at the bank, borrow a book at the library, buy
a book at the bookstore) starting from a shared initial posi-
tion and navigating to various target locations. Along with
various desires and beliefs, each agent starts out with dynam-
ical intentions in its cognitive system, one for each task it

might perform; each dynamical intention has a cognitive ac-
tivation value, representing the intensity of commitment to
the corresponding task, the task’s relative priority. All cog-
nitive activation values vary continuously during the agents’
run, reflecting continuous changes both in agents’ relative
task priorities and, more generally, in their overall cognitive
systems. Therefore, cognitive states change due to both delib-
erative and sub-deliberative processes: Deliberative methods
can re-plan agents’ task sequences; sub-deliberative, contin-
uous cognitive evolution also causes tasks’ relative priorities
to rise and fall, which can also re-order task sequences.

One of these three agents, AR (for Rules), is a hybrid
agent in which some geographic and task-specific intelligence
arises from explicit deliberative rules. In particular, when de-
liberating to re-plan its task sequence, AR employs a sorting-
based distance bias, giving higher priority to tasks that can
be completed closer to its current position, which is intended
to result in faster errand runs. Agent AR also follows the
one-book rule: As AR runs errands, propositional rules en-
code that it either buys or borrows a book, but not both; im-
portantly, the one-book rule has no effect on which of the
two book-related tasks is performed first—indeed, the rule
does not affect agent cognition or behavior until after a book-
related task is completed. A second hybrid agent, ANR (for
non-Rules), is identical to AR except that the deliberative sys-
tem of ANR does not encode either the distance bias or the
one-book rule. Instead, the task selection intelligence of ANR

relies on reactive priorities, simply selecting a maximal pri-
ority task at every opportunity. Unsurprisingly, as they run
errands, agents AR and ANR take different paths through their
world. They begin at the same location, and their paths are
initially identical, but after each buys a book, they diverge:
Agent ANR, not following the one-book rule or the distance
bias, eventually borrows a book and finishes its errands some-
what late; in contrast, agent AR follows its rules and finishes
sooner.

The third simulated agent, AL (for Learning), is identical
to ANR in its deliberation, with no explicit distance bias or
one-book rule, but it has learned certain useful reactive-level
associations in its cognitive system. Due to training runs in
which it perceived the target locations of the errands, AL has
learned to co-associate intentions corresponding to tasks with
geographically proximate targets, so when a task T has high
priority, priorities are raised on all tasks T ′ with target lo-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

83

cations near that of T . In addition, AL has learned that the
completion of one of the BuyBook and BorrowBook tasks —
represented by explicit beliefs about task completion— is to
be negatively associated with the intention to do the other
book-related task. As a result, when AL runs errands, even
though it has no deliberative encodings of the distance bias or
the one-book rule, it behaves similarly to AR: Agent AL buys
a book but does not borrow one, and it sequences its errands to
finish faster than ANR does (although not as fast as AR). Be-
cause dynamical intention-guided intelligence is distributed
over both the reactive and deliberative levels of agent A L, it
learned rule-like behavior from cognitive associations with-
out explicit propositional rules, improving its goal-directed
performance without additional dependence on deliberation.

In this paper, we summarize a framework for hybrid dy-
namical cognitive agents (HDCAs, for short) that supports
such dynamical intention-guided intelligence. The design
of HDCAs’ cognitive systems is influenced in a somewhat
unconventional way by the belief-desire-intention (or BDI)
theory of intention [Bratman, 1987]; the theory and its re-
lated implementations (e.g., [Georgeff and Lansky, 1987;
Rao and Georgeff, 1991] and successors) suggest that BDI
elements (beliefs, desires, and intentions) are an effective
foundation for goal-directed intelligence. Unlike typical BDI
agent implementations, HDCAs’ cognitive models intercon-
nect BDI elements in a continuously evolving system inspired
by (though different from) spreading activation frameworks
of [Collins and Loftus, 1975; Maes, 1989]. Each BDI ele-
ment in an HDCA is represented by an activation value, in-
dicating its salience and intensity “in mind” (e.g., how in-
tensely committed an intention), and cognitive evolution is
governed by differential equations, so elements’ activation
values affect rates of change of other elements’ activations.
HDCAs employ these dynamical cognitive representations on
both reactive and deliberative levels, enabling smooth hybrid
integration and enhancing agent performance by distributing
goal-directed intelligence over both levels. For example, as
described in [Aaron and Admoni, 2009a], HDCAs’ cogni-
tive systems can productively, dynamically re-order planned
task sequences and resolve inconsistencies among cognitive
elements —such as an intention to mail a letter co-occurring
with a belief that there is no letter to be mailed— without
invoking deliberation.

HDCAs’ reactive cognitive models are also influenced
by some distinguishing properties that differentiate intention
from desire (noted in [Bratman, 1987]). For examples, in
HDCAs, an intensely committed intention I diminishes im-
pacts of other intentions on the intensity of I; the strongest
intentions (i.e., intentions with the most intense commitment)
need not correspond to the strongest desires; and intentions,
not desires, govern HDCAs’ task priorities. In these ways,
HDCAs’ dynamical intentions function as conventional BDI-
based intentions in goal-oriented behavior.

In addition, we introduce the first proposed approaches to
learning for HDCAs —the kinds of learning employed by
agent AL, above— two methods based on modifying inter-
connections among cognitive elements: Hebbian learning,
which strengthens associations based on co-active elements;
and belief-intention learning that can flexibly encode a range

Figure 1: System-level architecture of an HDCA, showing
deliberative and reactive levels. Cognitive representations are
shared by the sub-deliberative spreading activation network
and the deliberative task sequencing process.

of focused, task-specific relationships. In section 5 of this pa-
per, we describe simple demonstrations of agents learning in
a virtual grid world, establishing the effectiveness and gen-
eral functionality of these methods. We also discuss poten-
tial extensions of these approaches to learning, emphasizing
how the hybrid dynamical system framework underlying HD-
CAs constrains and illuminates what such extensions might
require.

2 Model Structure
The underlying HDCA model draws upon several differ-
ent conceptual frameworks, including hybrid automata, BDI
modeling, and spreading activation models.

• At its foundation, an HDCA model is a finite state ma-
chine. Each state corresponds to a continuous action or
mode of behavior; in each state, differential equations
govern agent behavior, and transitions between states are
instantaneous. HDCAs are thus modeled as hybrid au-
tomata, as described in section 2.1.

• Cognitive elements of HDCAs are primarily BDI ele-
ments —beliefs, desires, and intentions— represented
by continuously evolving activation values. In each state
of an HDCA model, evolution of activation values is
governed by the differential equations in that state, as
described in section 2.2.

• Cognitive elements are interconnected in a (somewhat
unconventional) spreading activation framework: Ele-
ments serve as variables in differential equations, so
the activations of cognitive elements affect the (rates
of change of) activations of other cognitive elements.
These influences and interconnections among cognitive
elements are described in section 2.2.

In this section, we further explain and illustrate these ideas.

2.1 Hybrid and Deliberative Structure
The reactive / deliberative structure of HDCAs is illustrated
in Figure 1, showing sub-deliberative cognitive and dynam-
ical navigation processes; deliberative task sequencing and
path planning processes; and cognitive representations shared
across levels. Each level employs cognitive representations
in its own manner, but the representations fully support both
levels, for straightforward hybrid integration. The particular

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

84

deliberative task sequencing and path planning processes of
HDCAs in this paper are simple, although other, more com-
plicated methods could be readily employed. Planners es-
sentially derive “utility” values for each option, each task or
path segment, based on geographic information, task-specific
knowledge, and cognitive activations. Plans, then, are essen-
tially sequences (e.g., of tasks or path segments) in decreas-
ing order of utility; higher commitment to an intention (i.e.,
higher intention activation) translates to higher utility for the
associated task but does not solely determine task sequence.

Deliberation is designed to be invoked only in situations
that are not well handled by fully reactive processes. For
agents in this paper, deliberation occurs only in two circum-
stances: if the current task is unexpectedly interrupted (e.g.,
by a blockaded street in the grid world); or if the agent is
called upon to change its current task —due to completing the
previous task, evolutions of intention activations, or any other
cause— and must select from multiple candidates with essen-
tially equivalent intention activations. Unlike reactive task re-
sequencing —the changing of relative task ordering due only
to continuous evolutions of intention activations (i.e., task
priorities)— HDCAs’ deliberative task sequencing incorpo-
rates constructs such as the distance bias and the one-book
rule. Deliberation also re-evaluates an agent’s entire task se-
quence, adjusting activations of cognitive elements so that,
e.g., tasks earlier in the sequence have higher activations on
corresponding intentions, and precluded tasks have intentions
with highly negative activations. After deliberation, an agent
simply continues with its new cognitive activation values in
the reactive behavior of its new highest priority task.

In addition to being a hybrid reactive / deliberative system,
an HDCA is a hybrid dynamical system (HDS, for short), a
combination of continuous and discrete dynamics, modeled
by a hybrid automaton [Alur et al., 2000]. A hybrid automa-
ton is a finite state machine in which each discrete state (or
mode) is a continuous behavior, containing differential equa-
tions that govern system evolution in that mode. Transitions
between modes (including those from a mode to itself) are
instantaneous, occurring when guard conditions are met, and
may have discontinuous side effects, encoding discrete sys-
tem dynamics. Hybrid dynamical systems can be apt models
for navigating robots or animated agents (e.g., [Aaron et al.,
2002b; Axelsson et al., 2005]), and HDCAs’ reactive and de-
liberative structures naturally correspond to HDS elements:
Each task of an HDCA is a reactive behavior, implemented
as an HDS mode; deliberation in HDCAs only occurs during
transitions between tasks.

2.2 Reactive Structure
For this paper, an HDCA’s physical state (position and head-
ing angle) continuously varies as it navigates, with steering
based on [Goldenstein et al., 2001] and simple intersection-
to-intersection navigation in a grid world similar to the
method in [Aaron et al., 2002a], although other dynamical
approaches could be equally effective. This continuous phys-
ical state cleanly integrates with an HDCA’s cognitive system,
which is based on continuously evolving activations of BDI
elements (beliefs, desires, intentions); differential equations
govern continuous evolutions of all elements, physical and

cognitive. (Element values can also be changed discretely,
as effects of mode transitions; after completing a task, for
example, HDCAs’ mode transitions set the activation of the
corresponding intention to the minimum possible value and
the activation of the belief that the task has been completed to
the maximum possible value.) Figure 2 shows BDI elements
(and abbreviations for their names) and the mode transition
model for HDCAs in this paper, which is simplified to a one-
to-one correspondence between intentions and tasks.

Activation values of BDI elements are restricted to the
range [−10, 10], where near-zero values indicate low salience
and greater magnitudes indicate greater salience and inten-
sity of associated concepts; thus, for example, more active
intentions represent more commitment to and urgency of the
related tasks. Negative values indicate salience of the oppos-
ing concept, such as, for intentions, intention not to perform
the related task. For this paper, we restrict beliefs to only two
values, −10 (false) and 10 (true), although the system could
in principle express intermediate degrees of belief.

Cognitive activations are interconnected in differential
equations; equation 1 is a partial cognitive system (with many
elements omitted), where beliefs, desires, and intentions are
represented by variables beginning with B, D, and I , and
time-derivative variables are on the left in each equation:

˙DDC = a1BHC + a3IDC − a5IGC + · · ·
˙IDC = b1BHC + b3DDC − b6DHH + (1)

b8IDC − b10IGC + · · · .
This illustrates interconnectedness: Elements exert excitatory
or inhibitory influence by increasing or decreasing deriva-
tives, due to positive or negative connections —i.e., addition
or subtraction of the relevant terms— in the cognitive sys-
tem. Variables stand for activations of cognitive elements
(e.g., desire to deposit a check, DDC). Coefficients encode
impacts of connections; many are constants, but intention co-
efficients also contain components that encode distinguishing
properties of intention (see section 3) or are employed in im-
plementing learning (see section 4). For this paper, we make
the simplifying assumption that any two intentions mutually
conflict, and from that, the excitatory or inhibitory nature of
cognitive connections is generally intuitive—each intention is
negatively connected to all other intentions; each belief that a
task is completed is negatively connected to the correspond-
ing intention (and each belief that a task is not completed is
positively connected to an intention); desires are positively
connected to corresponding intentions, including the desire
to get a book being positively linked to the intentions for both
BuyBook and BorrowBook; etc.

In demonstrations for this paper, learning in HDCAs con-
sists of altering relationships among cognitive elements, i.e.,
changing coefficients in cognitive differential equations such
as equation 1. The processes by which this learning occurs
are discussed in section 4; other ways by which an HDCA
might potentially learn are discussed in section 6.

There is also a mechanism for perception in HDCAs, by
which proximity to items (e.g., a building, a street blockade)
affects activations in agents’ cognitive systems. Current HD-
CAs have only limited perceptual structure; potential for sub-
stantial extensions exists but is not discussed in this paper.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

85

Figure 2: Hybrid dynamical system modes and BDI elements (including abbreviations for names) for HDCAs in this paper.

3 Properties of Intention
By employing representations of BDI elements in HDCAs’
cognitive systems, we implicitly invite comparison of our
somewhat unconventional BDI application with the philo-
sophical foundations of BDI agents in [Bratman, 1987]. In
particular, it might initially seem possible that the entities
called intentions in HDCA cognition are not genuinely BDI
intentions: HDCA intentions might be inconsistent with
properties noted in [Bratman, 1987] that distinguish inten-
tions from other cognitive elements (most notably from de-
sires). We carefully implement HDCA intention, however, so
as to be consistent with theoretical distinguishing properties
that apply to our dynamical account of intention: Intentions
are conduct controlling elements that, when salient, resist re-
consideration and resist conflict with other intentions.1

For reconsideration resistance, we encode two criteria: any
high-active intention Ia (i.e., having high activation magni-
tude) tends to minimize impacts on Ia from other intentions;
and the magnitude of this effect grows as the activation (mag-
nitude) of Ia grows. To enable this, for intentions Ia and Ib,
for every a �= b, the differential equation for İa includes the
following structure:

İa = . . . − kn · PF(Ia) · Ib (2)

For example, in equation 1, the coefficient of IGC in the equa-
tion for ˙IDC has the form b10 = k10 · PF(IDC), with persis-
tence factor PF defined as

PF(Ia) = 1 − |Ia|∑
i |Ii| + ε

, (3)

where noise term ε > 0 prevents division by 0, and i ranges
over all intentions. For b �= a, PF(Ia) multiplies every inten-
tion Ib in the equation for İa, so as PF(Ia) nears 0 (i.e., as
Ia grows in magnitude relative to other intentions), contribu-
tions of every such Ib are diminished, and when PF(Ia) = 1

1These are not the only properties of intention that are em-
phasized in [Bratman, 1987]; they are, however, properties that
can apply to reactive-level intention, not requiring, e.g., future-
directedness incompatible with reactive implementations.

(i.e., Ia = 0), such contributions are unaffected. The denom-
inator encodes that Ia is less reconsideration-resistant when
other intentions are highly active.

Demonstrations of PF and similarly activation-oriented
mechanisms for conduct control and conflict resistance es-
tablish that dynamical intentions are consistent with the dis-
tinguishing properties of intention noted above; see [Aaron
and Admoni, 2009b] for additional discussion about HDCA
intention that is beyond the scope of this paper. Supported
by our results, we treat dynamical intentions in HDCAs as
conventional BDI intentions, rather than as some other cog-
nitive elements inconsistent with [Bratman, 1987]; this is a
necessary, if subtle, part of the foundation of HDCAs.

4 Learning
Because HDCA intelligence is based on agents’ cognitive ac-
tivation networks, we propose two methods of learning for
HDCAs that modify interconnections among cognitive el-
ements: Hebbian learning, which strengthens associations
based on concurrently salient cognitive elements; and belief-
intention (BI) learning, which illustrates the flexible adaptiv-
ity of HDCA’s cognitive networks to encode domain-specific
task relationships. In particular, we describe how HDCAs
can learn to approximate two aspects of goal-directed intel-
ligence discussed in section 1: We apply Hebbian learning
to train agents to approximate the distance bias, incorporat-
ing geographic proximity information into task sequencing;
and we apply BI learning to train agents to approximate the
one-book rule, relating beliefs about the completion of the
BuyBook and BorrowBook tasks to the intentions to perform
the tasks.

4.1 Hebbian Learning
We implement Hebbian learning (inspired by ideas of synap-
tic plasticity and neuronal interconnections in [Hebb, 1949])
to enhance connections based on concurrently high-active el-
ements in agents’ cognitive systems. In particular, HDCAs
in this paper learn to intensify connections among intentions
corresponding to geographically proximate target locations.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

86

For our Hebbian learning, training consists of an HDCA
making a single circuit through its grid world, taking a pre-
specified route that passes in proximity to all possible task-
targets (i.e., locations at which tasks are completed, such as a
post office or library). During this training session, an agent
represents these targets as ground concepts, cognitive ele-
ments corresponding to entities perceived in its environment;
there is a one-to-one correspondence between task-targets
and tasks, and thus between task-target ground concepts and
tasks (hence intentions, as well). Ground concepts have base-
line activation values of 0, but when an agent is within its ra-
dius of perception of a task-target, activation on the associated
ground concept instantaneously rises; except in extraordinary
cases, ground concept activations do not increase beyond ini-
tial levels. When the agent moves outside of its radius of per-
ception from the target, the target loses salience, and the cor-
responding activation gradually decreases to zero. (For im-
plementation details, see the supplementary website [Aaron
and Admoni, 2009b].) In this way, targets are co-active —
i.e., with activation values both greater than 0— only when
they are geographically proximate, with greater co-activation
when the targets are perceived closer to each other on an
agent’s training run.

Based on these concept activations, agents learn to asso-
ciate intentions corresponding to co-active (i.e., proximate)
task-targets. At every timestep during a training session, for
any task-target ground concepts a and b (a �= b) with activa-
tions greater than 0, the following adjustment is made:

IC(Ia, Ib) = IC(Ia, Ib) − β

c1
. (4)

In this equation, intention Ia is the intention corresponding
to the task with target represented by ground concept a (sim-
ilarly for Ib), IC(Ia, Ib) is the coefficient on the Ib term in
the differential equation for İa, β is the activation of ground
concept b, and c1 is a scaling constant.

Because all intentions are negatively interconnected in HD-
CAs in this paper, this Hebbian learning weakens the in-
hibitory links between intentions corresponding to co-active
targets; the extent to which the inhibitory effect of Ib on İa is
diminished, moreover, is proportional to the activation of b, so
more highly active concepts have stronger effects. Therefore,
in agents trained this way, positive activation on an intention
I is less inhibitory to intentions corresponding to task-targets
near that of I , with the extent of this effect intuitively corre-
sponding to perceived proximity of the related task-targets.

4.2 Belief-Intention Learning
To enable HDCAs to flexibly relate intentions to perform cer-
tain tasks with conditions on whether other tasks are or are not
completed —relationships that might naturally be encoded
in propositional rules (e.g., the one-book rule)— we imple-
mented belief-intention (BI) learning, which alters cognitive
connections among intentions and task-completion beliefs. In
particular, we apply BI learning to train HDCAs to behave
consistently with the one-book rule: to perform exactly one
of the two complementary book-related tasks, BuyBook and
BorrowBook, in such a way that the relative priorities of the
two tasks are not altered by the rule until one of the tasks is

complete. Training for BI learning consists of an agent sim-
ply running errands in its grid world; when the agent reaches
home at the end of its run, if it did not perform exactly one
of BuyBook and BorrowBook, coefficients are adjusted in its
cognitive system, and it undertakes another training run from
the same initial position. Training stops when the agent per-
forms exactly one of the two book-related tasks.

To enable BI learning of the one-book rule, some coeffi-
cients in HDCAs’ cognitive systems were implemented as:

IC(Ia, Bb) = kb(
Bb̄ − 10
−20

) (5)

IC(Ia, Bb̄) = kb̄(
Bb̄ − 10
−20

).

In these equations, a and b range over the two book-related
tasks, restricted to a �= b, so Ia is the intention for task a,
Bb is the belief that task b has been completed, B b̄ is the
belief that task b has not been completed, and IC(Ia, Bb)
(IC(Ia, Bb̄), respectively) is the coefficient for term Bb (Bb̄)
in the differential equation for intention Ia. Values kb, kb̄

are constants, and the term Bb̄−10
−20 in each coefficient ensures

that neither Bb nor Bb̄ affect Ia when Bb̄ is true (value 10),
i.e., when task b is not completed. To learn the one-book
rule, inhibitory connections are strengthened between beliefs
that books have been obtained and intentions to obtain books.
Specifically, after each training run that did not adhere to the
one-book rule, coefficients are altered as follows:

IC(Ia, Bb) = IC(Ia, Bb) ∗ c2 (6)

(and similarly for IC(Ia, Bb̄)), where c2 > 1 controls the
extent of the modification of coefficients. Thus, this BI learn-
ing strengthens the inhibitory links between beliefs that one
book-related task has been completed and the intention to per-
form the complementary task, leading to one-book rule-like
behavior: Before either task is completed, the beliefs have
no enhanced effect on intentions, but after one is completed,
activation on the complementary intention rapidly decreases.
This is an example of the relationships that can be learned
with BI learning; other relationships, linking different be-
liefs and intentions under different circumstances, could be
learned by the same general method.

4.3 Integrating Hebbian and BI Learning
For the particular applications of Hebbian and BI learning
in this paper, because the two methods alter disjoint sets of
cognitive connections, HDCAs can straightforwardly employ
both methods without structural complications. In this paper,
a training run for this integrated Hebbian-BI learning con-
sists of an agent running errands in the grid world along an
autonomously determined path. An agent concludes training
when its most recent training run meets conditions similar to
the distance bias and one-book rule—i.e., the agent performs
exactly one of the two book-related tasks, suggesting ade-
quate one-book rule learning; and the entire errand run takes
no less time than the previous run did, suggesting adequate
distance bias learning. (All HDCAs in our simulations move
at identical, constant speed, so time and distance are equiv-
alent measures.) Deeper accounts of HDCA learning could

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

87

explore different training conditions and applications of Heb-
bian and BI learning to overlapping sets of cognitive connec-
tions, but our simplified conditions suffice for the illustrative
demonstrations in section 5.

5 Demonstrations and Experiments
We simulated HDCAs in the grid world of Figure 3 to demon-
strate effects of learning on HDCAs’ intention-guided intel-
ligence. In each simulation, one or more HDCAs navigated
to the targets in Figure 3, completing a series of tasks (listed
on the display as MailLetter, . . . , BuyBook). Some agents
were designed with deliberative systems encoding the dis-
tance bias and one-book rule, while others were trained to ap-
proach such performance by altering their reactive cognitive
systems; we tested agents by comparing performance on au-
tonomous errand runs, evaluating agents’ task sequences and
times at which tasks were completed. We compactly sum-
marize our results here; the supplementary website for this
paper [Aaron and Admoni, 2009b] has animations and addi-
tional information about these simulations, including param-
eter values employed in equations of the learning methods.

5.1 Hebbian Learning
To establish that Hebbian learning can improve HDCA per-
formance, a purely reactive agent —an HDCA with its delib-
erative processes disabled— learned to approximate the dis-
tance bias, with training as described in section 4.1: Agent
AH (for Hebbian) made a single training run with radius of
perception rp = b+ i, where b and i are the lengths of a block
and an intersection in the grid world; its pre-specified path
passed within rp of each target location. At each timestep,
cognitive coefficients were updated as in equation 4.

Agent AH was then tested by comparing its errand-running
performance to that of agent ANH (non-Hebbian), which was
identical to the original, pre-training AH . Both agents made
single errand runs from the same position with the same ini-
tial cognitive activations; the initial location and cognitive
activations were those for the training of AH . Each agent’s
cognitive system and task priorities evolved individually dur-
ing the test run, but because the initial activations were high-
est on intentions corresponding to remote target locations —
e.g., IMailLetter , because the post office is not near any other
target— the effects of learning were not immediately appar-
ent: With no high-priority targets proximate to other targets,
both agents began their runs on similar paths, completing
their first two tasks simultaneously. After that, however, the
agents’ behavior diverged, suggesting that the reactive-level
learning of AH affected navigation in accord with the dis-
tance bias: After both agents completed MailLetter and De-
positCheck, agent ANH next went to the school to complete
GetChild, whereas AH went to the bookstore and then the li-
brary, the next task-targets in order of geographic proximity.

5.2 Belief-Intention Learning
To establish that belief-intention (BI) learning can improve
HDCA performance, a purely reactive agent ABI learned to
approximate the one-book rule, with training as described in
section 4.2: Agent ABI autonomously ran errands, adjusting

cognitive coefficients as in equation 6 and undertaking fur-
ther training runs when a run did not include exactly one of
the book-related tasks; each of its 7 training runs began with
the same cognitive element activations and from the same po-
sition near the library on the left of the grid world.

After its training had concluded, ABI was tested by com-
parison to agent ANBI , which was identical to the original,
pre-training ABI . Tests were run from 16 starting locations,
the intersections in the four-by-four grid world, which did
not include the training location; for each test run, the agents
autonomously ran errands with identical initial cognitive el-
ement activations (the same as those for the training of ABI)
from their shared starting point. Agent ABI completed exactly
one book-related task on 15 test runs, whereas ANBI com-
pleted one book-related task on 8 test runs, suggesting that
BI learning enables reactive-level changes in HDCA cogni-
tion to encode one-book rule-like behavior.

5.3 Integrated Hebbian and BI Learning
A demonstration similar to the three-agent errand-running ex-
ample in section 1 of this paper illustrated the integration of
Hebbian and BI learning, showing that HDCAs can learn be-
haviors consistent with the distance bias and one-book rule
without explicit deliberative encoding of either. Training of
learning agent AL was in accord with the description in sec-
tion 4.3; each of its 18 training runs began with the same cog-
nitive element activations and from the same position near
the library on the left of the grid world. (See supplementary
website [Aaron and Admoni, 2009b] for relevant parameter
values and other implementation details.)

After training, AL was tested with two other agents: agent
ANR, which was identical to the pre-training AL; and agent
AR, which was identical to ANR except that it had explicit,
deliberative encodings of the distance bias and one-book rule.
Tests were run from 16 starting locations, the intersections in
the four-by-four grid world, which did not include the train-
ing location; for each test run, agents autonomously ran er-
rands with identical initial cognitive element activations (the
same as those for the training of AL) from their shared start-
ing point. On every run, AR bought a book but did not borrow
one, due to its explicitly encoded one-book rule; by compari-
son, on 15 of the 16 test runs, AL bought but did not borrow a
book, whereas ANR completed both book-related tasks on ev-
ery test run. Additionally, AL always finished the run in less
time than ANR, though later than AR. Indeed, on 11 of the 16
test runs, AL and AR performed the same task sequence, and
AL finished less than 0.75 seconds behind AR, with the differ-
ence seemingly due to the time immediately after completing
BuyBook in which the activation on IBoB in AL decreased as
an effect of BI learning. Together, these results support our
results about individual Hebbian and BI learning methods,
suggest the effectiveness of integrated Hebbian-BI learning
in this task domain, and suggest the potential for learned be-
havior to successfully generalize beyond a training set.

6 Discussion
The simple demonstrations in section 5 contain agents with
limited perceptual mechanism and little world interaction, but

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

88

POSC

BK

HM

LI
BO

U

CU
L

MailLetter
GetChild
DepositCheck
HurryHome
Get/BorrowBook
BuyBook

Time: 34.4167

SC = school BO = bookstore
HM = home PO = post office
U = UPS box LI = library
BK = bank C = credit card ad

Desires

L

Intentions

L

AgentL DC BuB

R

MailLetter
GetChild
DepositCheck
HurryHome
Get/BorrowBook
BuyBook

Time: 34.4167

SC = school BO = bookstore
HM = home PO = post office
U = UPS box LI = library
BK = bank C = credit card ad

Desires

R

Intentions

R

AgentR DC BuB

NR

MailLetter
GetChild
DepositCheck
HurryHome
Get/BorrowBook
BuyBook

Time: 34.4167

SC = school BO = bookstore
HM = home PO = post office
U = UPS box LI = library
BK = bank C = credit card ad

Desires

NR

Intentions

NR

AgentNR DC BuB

Figure 3: Screen display of a simulation in progress. A map of the four-by-four grid world, left, shows buildings and obstacles
(black squares), targets (white squares abutting buildings), and three agents (L, R, and NR). Visual representations of agents’
desire and intention activations are on the right, beneath which are lists of tasks completed by each agent.

the underlying ideas are designed to be more generally appli-
cable. HDCAs’ deliberative and reactive systems employ the
same cognitive representations, and there is nothing neces-
sarily unconventional about HDCAs’ deliberative levels, so
this dynamical intention-based framework could potentially
support more powerful learning, perception, and deliberative
inference methods for HDCAs than those in section 5, with
similarly clean integration of reactive and deliberative intelli-
gence. Here, we discuss some limitations and possible exten-
sions of HDCAs’ cognitive models and of the approaches to
learning for HDCAs presented in this paper.

6.1 Hybrid Dynamical Cognitive Modeling
In the demonstrations in this paper, HDCAs’ representations
of BDI elements are overloaded: We simplify agent cogni-
tion by conflating salience and cognitive intensity or commit-
ment “in mind,” so an activation value represents both the
intensity and the salience of an element. If future applica-
tions required agents to separate those features —e.g., to be
very aware (high salience) of a mild desire (low intensity)—
the HDCA framework could readily adapt, supplying multi-
ple activations for each cognitive element. A cost of such
expansion, however, would be a larger, potentially less com-
putationally efficient cognitive system. We have not yet ad-
dressed efficiency concerns —our code was in MATLAB and
not fully optimized for speed— or whether sophisticated HD-
CAs are practical for large-scale applications.

To further simplify the implementations and explanations
in this paper, HDCA deliberation is treated as if it were in-
stantaneous: We modeled deliberation as part of instanta-
neous mode transitions in hybrid automata rather than by ex-
plicit HDS modes that model time spent during deliberation,
although such deliberation-modes could in principle be de-
signed and incorporated without altering HDCAs’ cognitive
representations. Modeling HDCAs as hybrid automata also
supports the clean interconnections among deliberative and
reactive processes, and it enables analysis methodologies for
HDSs (e.g., [Asarin et al., 2007], which accommodates non-
linear systems) to potentially algorithmically verify some as-
pects of agent behavior, although practical and theoretical re-
strictions on HDS analysis [Alur et al., 2000], make HDCA
behavior verification an extremely challenging problem.

6.2 Learning for HDCAs

Because cognitive representations are shared by HDCAs’ re-
active and deliberative structures, the reactive-level learning
methods in this paper can improve intention-guided behavior
without additional reliance on deliberation, and more power-
ful HDCA learning methods might achieve even stronger re-
sults. Because of the sophisticated goal-directed intelligence
that could be learned, a supervised approach closer to the
BDI agent learning in [Subagdja and Tan, 2008] may well
be more successful than an evolutionary algorithm-based ap-
proach [Bugajska et al., 2002] or a parameter fitting-based
approach to hybrid dynamical system learning (even, e.g.,
the multi-phase approach in [Kawashima and Matsuyama,
2005]). Further investigation is needed to determine which
approaches might be most productive for HDCA learning.

The learning demonstrations in this paper are incomplete
in several ways. We have not fully investigated many crit-
ical aspects of the methods in section 4, such as choices of
cognitive interconnections to alter during learning, parame-
ter settings for the alterations performed during learning, and
conditions for the learning processes to commence and con-
clude. Further testing is also needed to determine how our
results might generalize to a wide range of agents’ initial
cognitive activations or to environments other than our grid
world. (In particular, the Hebbian learning of the distance
bias may not easily generalize to other environments.) We
hand-coded a mechanism specifically to train agents’ cogni-
tive networks to approximate the one-book rule, but in a more
generally applicable and developmentally insightful system,
this learning might instead arise organically from primitive
factors —e.g., desires to have a book, finish errands quickly,
and not carry too much— that could also serve as foundations
for other rules and constraints on agent behavior.

No matter how general a foundation for HDCA learning
might be, however, adjusting interconnections among cogni-
tive elements would not result in learning an explicit proposi-
tional rule; instead, the HDCAs would learn a tendency that
approximates a rule, as in the examples in section 5. Dif-
ferent learning methods, however, might potentially enable
explicit propositional rule learning in HDCAs. Ultimately,
such rules are encoded by guards on HDS modes and transi-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

89

tions between modes (see section 2.1); in principle, it seems
possible to construct an HDS model in which the guards and
mode transitions are parameterized, and the defining param-
eters could be altered at run time, thus permitting rule learn-
ing. This is related to the problem of learning new behav-
iors —i.e., incorporating new modes into an agent’s HDS
model— which would require adding new modes, mode tran-
sitions, and guards during an execution, essentially reshap-
ing the mode-transition system to include the new behavior.
The formal structure of HDSs thus illuminates how uncon-
ventional HDS models might potentially support such guard-
level or mode-level learning.

7 Conclusion
Hybrid dynamical cognitive agents are based on continuously
varying cognitive representations that are shared by deliber-
ative and reactive processes, distributing intention-guided in-
telligence over both levels. The Hebbian and belief-intention
learning methods in section 4 are the first approaches to learn-
ing proposed for HDCAs, and demonstrations of these meth-
ods show that HDCAs’ cognitive networks can encode ge-
ographic or task-specific factors that might otherwise be el-
ements of deliberative processes, augmenting goal-directed
intelligence without additional dependency on deliberation.
Variations of these approaches to learning might potentially
train an HDCA’s deliberative system by directly altering the
mode-transition structure of its underlying hybrid dynami-
cal system model; the formal HDS structure illuminates what
such learning would entail, although it remains unclear how
HDS analysis methods could be adapted for such unconven-
tional, learning-oriented HDS models.

Although our simple demonstrations contained small num-
bers of HDCAs, with limited perceptual mechanism and
world interaction, the underlying ideas are more generally ap-
plicable, and more sophisticated approaches to learning might
have far greater effects on both reactive and deliberative per-
formance. Ultimately, dynamical intention-based approaches
to learning could lead to intention-guided agents that empha-
size reactive intelligence and employ deliberation only when
needed, making them more robust, efficient performers in
multi-agent scenarios and other dynamic applications.

Acknowledgments
The authors thank Jim Marshall, Michael Littman, and HY-
CAS paper reviewers for their insightful and helpful com-
ments on previous versions of this paper.

References
[Aaron and Admoni, 2009a] E. Aaron and H. Admoni. A

framework for dynamical intention in hybrid navigating
agents. In Hybrid Artificial Intelligence Systems, 2009.
To appear.

[Aaron and Admoni, 2009b] E. Aaron and H. Admoni. Sup-
plementary HYCAS 2009 material, 2009. Available at
http://eaaron.web.wesleyan.edu/hycas09 supp.html.

[Aaron et al., 2002a] E. Aaron, F. Ivančić, and D. Metaxas.
Hybrid system models of navigation strategies for games

and animations. In Hybrid Systems: Computation and
Control, pages 7–20. 2002.

[Aaron et al., 2002b] E. Aaron, H. Sun, F. Ivančić, and
D. Metaxas. A hybrid dynamical systems approach to in-
telligent low-level navigation. In Proceedings of Computer
Animation, pages 154–163. 2002.

[Alur et al., 2000] R. Alur, T. Henzinger, G. Lafferriere, and
G. Pappas. Discrete abstractions of hybrid systems. Proc.
of the IEEE, 88(7):971–984, 2000.

[Asarin et al., 2007] E. Asarin, T. Dang, and A. Girard. Hy-
bridization methods for the analysis of non-linear systems.
Acta Informatica, 43(7):451–476, 2007.

[Axelsson et al., 2005] H. Axelsson, M. Egerstedt, and
Y. Wardi. Reactive robot navigation using optimal timing
control. In American Control Conference, 2005.

[Bratman, 1987] M. Bratman. Intentions, Plans, and Prac-
tical Reason. Harvard University Press, Cambridge, MA,
1987.

[Bugajska et al., 2002] M. D. Bugajska, A. C. Schultz, J. G.
Trafton, M. Taylor, and F. E. Mintz. A hybrid cognitive-
reactive multi-agent controller. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2807–2812, 2002.

[Collins and Loftus, 1975] A. M. Collins and E. F. Loftus. A
spreading activation theory of semantic priming. Psycho-
logical Review, 82:407–428, 1975.

[Georgeff and Lansky, 1987] M.P. Georgeff and A.L. Lan-
sky. Reactive reasoning and planning. In AAAI-87, pages
677–682, 1987.

[Goldenstein et al., 2001] S. Goldenstein, M. Karavelas,
D. Metaxas, L. Guibas, E. Aaron, and A. Goswami. Scal-
able nonlinear dynamical systems for agent steering and
crowd simulation. Computers And Graphics, 25(6):983–
998, 2001.

[Hebb, 1949] D. O. Hebb. The Organization of Behavior.
John Wiley & Sons, Inc., New York, NY, USA, 1949.

[Kawashima and Matsuyama, 2005] H. Kawashima and
T. Matsuyama. Multiphase learning for an interval-based
hybrid dynamical system. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer
Sciences, E88-A(11):3022–3035, 2005.

[Maes, 1989] P. Maes. The dynamics of action selection. In
IJCAI-89, pages 991–997, 1989.

[Rao and Georgeff, 1991] A. S. Rao and M. P. Georgeff.
Modeling rational agents within a BDI-architecture. In
Proc. of Principles of Knowledge Representation and Rea-
soning, pages 473–484, 1991.

[Subagdja and Tan, 2008] B. Subagdja and A. H. Tan. Plan-
ning with iFALCON: Towards a neural-network-based
BDI agent architecture. In IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, pages 231–
237, 2008.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

90

Extended Markov Tracking with Ensemble Actions

Zinovi Rabinovich and Nicholas R. Jennings
Electronics andComputer Science,

University of Southampton,
SouthamptonSO17 1BJ
{zr,nrj}@ecs.soton.ac.uk

Abstract

In this paper we extend the control methodology
based on Extended Markov Tracking (EMT) by
providing the control algorithm with capabiliti es
to calibrate and even partially reconstruct the en-
vironment’s model. This enables us to resolve
the problem of performance deterioration due to
model incoherence, anegativeproblem in all model
based control methods. The new algorithm, En-
semble Actions EMT (EA-EMT), utili ses the ini-
tial environment model as a library of state tran-
sition functions and applies a variation of predic-
tion with experts to assemble and calibrate a re-
vised model. By so doing, this is the first control
algorithm that enableson-line adaptationwithin the
DynamicsBased Control (DBC) framework. In our
experiments, weperformed arangeof testswith in-
creasingmodel incoherenceinduced by threetypes
of exogenous environment perturbations: catas-
trophic, periodic and deviating. The results show
that EA-EMT resolved model incoherence andsig-
nificantly outperformed thebest currently available
DBC solution by upto 95%.

1 Introduction
Model based control methodologies have foundtheir expres-
sion in a wide range of AI techniques. From basic planning
methods like STRIPs to complex PID controllers, the main
principle remains the same: the decision onwhat action to
take is based on a mathematical model of the environment
response to an action application. However, in spite of be-
ing mathematically sound with provable properties, model
based control methods suffer from one common pitfall . If
the model is incoherent, that is a discrepancy exists between
the actual reaction of the environment to an actionapplication
andthereaction described bythemodel, thedecisionmadeby
amodel based controller will besuboptimal. Now, a common
approach to resolve this problem is model calibration: either
through off- line or on-line interaction with the environment,
the model is adjusted (or even entirely reconstructed) to re-
duceincoherence and facilit atebetter decision making.

Although model calibration has received increasing at-
tention in recent years, the existing approaches make sig-

nificant behavioural assumptions on the environment, rang-
ing from frame assumptions [Pasula et al., 2004] to struc-
tured motion of physical robots [Eliazar and Parr, 2004;
Stronger and Stone, 2005]. Against this background, in this
paper we relax these environment behavioural li mitations by
concentrating ona control framework with discrete abstract
state models. More specifically, we concentrate on solving
on-line model calibration for the Dynamics Based Control
(DBC) framework [Rabinovich et al., 2007], which allows
application of the model based control methodology to an
even wider rangeof domains(e.g. environmentswith abstract
discretestatespacesand generic behaviour) than hitherto was
possible.

In more detail , the DBC framework is almost unique in its
abilit y to capture dynamic control tasks from the subjective
point of view, i.e. in termsof agent’sbeliefsand observations
of the changes that occur in the environment, and is based
on two key principles. First, a part of the perceptual control
paradigm [Powers, 1973], it states that changes in the envi-
ronment are ameans to altering and controlli ng perceptions.
For instance, if wefeel cold, we adjust temperature in aroom
to feel warmer, thuschanging the environment to producethe
required perception. Second, is that the dynamics of the sys-
tem, rather than a momentary system state, are ameans of
describing the control task and modulation of environment
dynamics are ameans of solving the task. Notice, for exam-
ple, that in our cold room example it was necessary to pro-
duce a change – increase the temperature – rather than bring
it to a certain value. Combined together, theseprincipleswere
implemented in a model based control algorithm termed Ex-
tended Markov Tracking (EMT) control. The algorithm has
been shown to be an effectivepolynomial timesolutionto the
DBC framework in discrete Markovian environments, where
thenext system statedependsonly onthe current system state
and the control action taken [Rabinovich et al., 2007].

However, aswith any model based control algorithm, EMT
control is subject to deteriorating effects of model incoher-
ence. In particular, our experiments further reveal that the
standard EMT controller can not recover from persistent or
catastrophic incoherence, where the environment behaves in
away not captured bythemodel. Nevertheless, EMT Control
remains the solesolutionwithin theDBC framework. There-
fore, it is the only algorithm capable of operating in envi-
ronments with a control task description that is both subjec-

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

91

tive and dynamic. The algorithm’s polynomial running time
underlines its importance even further, making its extension
imperative. Wethusmodify theEMT control algorithm to in-
clude model calibration, which resolves the performancede-
terioration induced byamodel incoherence.

The adaptive algorithm we have developed, the Ensemble
Action EMT (EA-EMT), enables model calibration through
theuseof expert ensembles[Cesa-Bianchi andLugosi, 2006].
For our purposes, each expert in the ensemble represents an
alternative way to capture and model effects that an action
has on the environment. EA-EMT dynamically merges the
expert alternatives together, thus building a new environment
model. Over time EA-EMT changes the properties of that
merger, reflecting the performance of each expert in captur-
ing environment behaviour, thus calibrating the environment
model it uses.

The rest of the paper is organised as follows. In Section 2
we detail the operation of the standard EMT Control algo-
rithm. Section 3follows with the description of our new EA-
EMT algorithm, detaili ng how it reconstructs and calibrates
the environment model throughthe use of expert ensembles.
Experimental support for the effectivenessof our approach is
given in Section 4. The experiments takespecial focuson the
on-line property of the EA-EMT model calibration, under-
lining the algorithm’s abilit y to work in environments with
changing behavioural trends. Section 5 summarises the re-
sultsand gives futuredirections of this research.

2 EMT Control
The standard EMT algorithm continually maintains an esti-
mate of system dynamics. To do so, the algorithm assumes
that thesystem isan autonomousdiscreteMarkov chain. That
is, the system state stochastically develops over time with-
out external influence, and the next system state depends on
the current state only. This allows EMT to describe the esti-
mateof thesystem dynamicsby asinglestochastic matrix. To
maintain the estimate, theEMT algorithm performsa conser-
vative update of the system dynamics matrix, minimising the
Kullback-Leibler divergencebetween thenew andtheold es-
timate, with the limitation that thenew estimatehas to match
theobserved system transition that triggered theupdate.

To put it formally, assume that two probabilit y distribu-
tions, pt and pt+1, are given that describe two consecutive
states of knowledge about the system, and τEMT

t is the old
estimate of the system dynamics. Then the EMT update
τEMT
t+1 is the solution of the following optimisation problem,

whereDKL is theKullback-Leibler divergence:

τEMT
t+1 = arg min

τ
DKL(τ × pt‖τ

EMT
t × pt)

s.t. pt+1(x
′) =

∑

x

(τ × pt)(x
′, x)

andpt(x) =
∑

x′

(τ × pt)(x
′, x)

Theupdate isabbreviated: τEMT
t+1 = H

[

pt → pt+1, τ
EMT
t

]

.
AlthoughEMT can work with more general environmen-

tal descriptions (see e.g. [Adam et al., 2008]), it has been
more commonly used with adiscreteMarkovian environment
with partial observabilit y, described by a tuple MEnv =<
S, s0, A, T,O,Ω >, where:

• S is theset of all possible environment states;

• s0 is the initial state of the environment (which can also
beviewed asadistribution over S);

• A is theset of all actions applicable in the environment;

• T is the environment’s probabili stic transition function:
amappingT : S ×A → ∆(S). That is, T (s′|a, s) is the
probabilit y that the environment will move from state s
to states′ under actiona;

• O is theset of all possibleobservations. This iswhat the
sensor input would look like for an outsideobserver;

• Ω is theobservation probabilit y function: amapping
Ω : S × A × S → ∆(O). That is, Ω(o|s′, a, s) is the
probabilit y that o will be observed given that the envi-
ronment moved from states to states′ under actiona.

Thisnaturally connectswith theEMT algorithm, asknowl-
edge about the system is summarised by a distribution vector
over the system states pt ∈ ∆(S), in which case the system
dynamics estimator created by EMT has the form of a condi-
tional probabilit y τ : S → ∆(S).

P
t

P
t+1

τEMT

T
a

Environment

EMT Controller

Belief Update
EMT

Action Selection
& Modela

Reference (Dynamics) Signal

Action

Observation

Figure1: Closed loop of EMT Control

Theoverall control algorithm, termed EMT Control, forms
a closed loopcontrol with a referencesignal [Stengel, 1994]
(Figure 1 depicts the scheme). The referencesignal encodes
thetask to beperformed andtakestheform of the conditional
probabilit y τ∗ : S → ∆(S). The standard EMT Control (see
Figure2) can besummarised asagreedy one-step lookahead
correction action selection. At every point in time, the algo-
rithm attempts to predict the reaction of an estimation algo-
rithm (EMT in thiscase) to the changes induced byan action
(lines 2-7 of the algorithm), and then chooses the action that
shifts the EMT estimator closest (line 8) to the referencedy-
namics τ∗. Once the action has been applied, the response
of the EMT estimator to the changes in the environment is
registered (line 11), and the control loops to make its next
decision.

Notice that the controller action selection in lines 2-8 is
heavily dependent on the environment model, as it uses the
mappingTa to predict actioneffects. If themodel is incoher-
ent thereaction of EMT can not be estimated correctly, which
in turn will l ead to selection of a suboptimal action. In what
follows, we modify the action selection process to vary the
environment model it uses.

3 Ensemble Action EMT
Asalready stated, theperformanceof thestandard EMT Con-
trol algorithm deteriorates if the environment model is inco-
herent. However, by providing the algorithm with an addi-
tional methodto correct model incoherences, it is possible to
rectify thedeterioration.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

92

Require:
Set thesystem stateestimator p0(s) = s0 ∈ ∆(S)
Set thesystem dynamics estimator

τEMT
0 (s̄|s) = prior(s̄|s)

Set time to t = 0.
1: loop
2: for all a ∈ A do
3: Set T̄a = Ta {use transition model T directly}
4: Set p̄a

t+1 = T̄a ∗ pt

5: Set Da = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

6: Set V (a) = 〈DKL (Da‖τ
∗)〉

pt

7: end for
8: Select a∗ = arg min

a
V (a)

9: Apply a∗, receiveobservation o ∈ O
10: Computept+1 due to theBayesian update:

pt+1(s) ∝ Ω(o|s, a)
P

s′
T̄ (s|a, s′)pt(s

′)

11: Compute τEMT
t+1 = H

ˆ

pt → pt+1, τ
EMT
t

˜

12: Set t := t + 1
13: end loop

Figure2: EMT control algorithm.

Now, there are many incoherences a Markovian model,
MEnv =< S, s0, A, T,O,Ω >, may have. While the choice
of the state, action and observation spaces, as well as the ob-
servabilit y function, may be dictated by subjective consider-
ations (e.g. to make it more readable for the human domain
designers), the transition functionT isalwaysdictated by the
environment. Thus, in thiswork we choose to concentrateon
the quality of the transition function T . This function maps
actions into stochastic matrices, so that for each actiona ∈ A
the matrix Ta = T (·|·, a) models the effects of that action
on the system state. The difference between the matrix Ta

and the true effects of the action a ∈ A is the incoherence
type we have resolved in the EA-EMT algorithm (Figure 3).
Thus, while the standard EMT Control views the transition
mapping, a 7→ Ta, to be constant, the EA-EMT algorithm
modifies its transition mapping over time, reducing the map-
ping’s incoherence. However, beforewegointo thedetailsof
how it was implemented, wewould like to explain theprinci-
ples of the approach taken byEA-EMT.

EA-EMT assumes that, althoughthe mapping T : A →
∆(S)S is incoherent, the set of matrices TA = {Ta =
T (·|·, a)}a∈A represents feasible effects that the actions may
have. The algorithm then attempts to assemble abetter map-
ping, T̄ : A → ∆(S)S , based on the set TA. More specif-
ically, for each action a ∈ A the transition matrix T̄a is a
weighted linear combination of matrices in theset TA, that is
T̄a =

∑

b∈A
Tb ∗ wa(b). Intuitively, the weight wa(b) rep-

resents the similarity between the matrix Tb ∈ TA and the
effects that the actiona ∈ A hason onthe environment state.
As the interaction between the EA-EMT algorithm and the
environment progresses, theweightswa(·) areupdated, mod-
ifyingthemappingT̄ : A → ∆(S)S to reduceitsincoherence
with the environment.

The update of the weights wa(·) is based onthe approach
of predictions with expert ensembles [Cesa-Bianchi and Lu-
gosi, 2006]. The intuition behind this approach is that, when

making a prediction or a decision, a readily available set of
feasible alternatives (the expert ensemble) can be merged to-
gether to form a prediction which is potentially better than
any of the alternatives standing alone. In our case the ex-
pert ensemble is the set TA, where each expert attempts to
predict the effects an action would have on the environment
state. From this point of view, the weight wa(b) expresses
how much the expert Tb ∈ TA is trusted to capture the effects
of the action a ∈ A correctly. OnceEA-EMT has applied an
action, a∗, it measures the discrepancy between the effect a∗

had and the effect predicted by expert Tb. The lower the dis-
crepancy, thehigher will be theweight wa∗(b) when thenext
control decision ismade.

Require:
Set thesystem stateestimator p0(s) = s0 ∈ ∆(S)
Set thesystem dynamics estimator

τEMT
0 (s̄|s) = prior(s̄|s)

Set action weight vectorswa(a′) ∝ δa(a′) + ǫ
Set time to t = 0.

1: loop
2: for all a ∈ A do
3: Set T̄a =

P

a′

Ta′ ∗ wa(a′)

4: Set p̄a
t+1 = T̄a ∗ pt

5: Set Da = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

6: Set V (a) = 〈DKL (Da‖τ
∗)〉

pt

7: end for
8: Select a∗ = arg min

a
V (a)

9: Apply a∗, receiveobservation o ∈ O
10: Computept+1 due to theBayesian update:

pt+1(s) ∝ Ω(o|s, a)
P

s′
T̄a(s|s′)pt(s

′)

11: Compute τEMT
t+1 = H

ˆ

pt → pt+1, τ
EMT
t

˜

12: for all a ∈ A do
13: Set p̄a

t+1 = Ta ∗ pt

14: Set Da = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

15: Set V (a) =
˙

DKL

`

Da‖τ
EMT
t+1

´¸

pt

16: Set wa∗(a) ∝ wa∗(a)βV (a)

17: end for
18: Set t := t + 1
19: end loop

Figure3: TheEA-EMT control algorithm.

Given the above principles, we have modified the standard
controller algorithm. Specifically, line 3, previously directly
substituted into the calculations the transition function from
the provided model. Whereas now it uses a weighted com-
bination of the matrices in TA. The rest of the computations
proceed as before until the EMT estimate, τEMT

t+1 , of the ac-
tion outcome is computed in line 11: the algorithm predicts
the effects of each action onthe EMT estimate, chooses the
action that would bring τEMT

t+1 closest to the reference sig-
nal τ∗, applies the action and receives an observation. At
that point, the algorithm has to measure the performance of
each expert, and update the weights. Now, recall that the al-
gorithm operates in terms of subjective beliefs, the relevant
effectsof the actionarethusthose expressed in theEMT esti-
mate τEMT

t+1 . Thismeans that theperformanceof each expert

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

93

can be expressed by thedistancebetween the estimateτEMT
t+1

and the estimate that would have been obtained based onthe
expert prediction. This distance is computed in lines 13-15,
and the weight of the expert is updated accordingly. Specifi-
cally, the old weight of the expert is multiplied by βd, where
β ∈ (0, 1) is theparameter of theupdate andd is thedistance
above. Once all weights are updated, they are normalised to
sum to 1, so that T̄a at the next step will be astochastic ma-
trix. Noticethat all these operations take time polynomial in
the model parameters, such as the size of state, action and
observation spaces.

4 Experimental Evaluation

To test the effectivenessof the EA-EMT algorithm, we have
devised a set of comparative tests with the standard EMT
Controller. To support comparabilit y with previous work in
this area, all tests were based onmodifications of the Drunk
Man (D-Man) domain: a controlled random walk over a lin-
ear graph (seeFigure 4 for the principle structure) with ac-
tionsweakly modulatingtheprobabilit y (only asmall discrete
set of probabiliti es in therange(ǫ, 1−ǫ) with ǫ ≫ 0 isattain-
able) of the left and the right steps. A task within the domain
is represented bya conditional probabilit y τ∗(s′|s), therefer-
encesignal for the controller, specifying what sort of motion
throughthe state spacehas to be induced. During an experi-
ment run, the control algorithm was provided with a Marko-
vian environment model, MEnv =< S, s0, A, T,O,Ω >,
incoherent with the true behaviour of domain. The incoher-
ences were created by introducing exogenous perturbations
to the behaviour of the D-Man domain. In particular, three
perturbations, making the model of the standard D-Man do-
main increasingly incoherent with the actual environment be-
haviour, wereused:

• Deviating. Anadditional deterministic step (to theright)
was done.

• Periodic. An additional deterministic step wasdone, but
itsdirectionchanged with time.

• Catastrophic. A random permutation of actionswas se-
lected σ : A → A. When the controller applied action
a ∈ A, the environment responded instead to σ(a).

Threebaselines where obtained in various combinations:
standard EMT Control algorithm operating in aperturbed en-
vironment, standard EMT Control operatingwithin an unper-
turbed environment, andstandard EMT Control operatingin a
perturbed environment with its model correctly encoding the
environment perturbation. At least two baselines are present
in each experimental setting to provide comparative perfor-
mance bounds. Unless specified otherwise, the confidence
envelope of 99.5% is depicted in all datagraphs.

s*0 1 2

(1−p)

.......... n

(1−a)p

ap

Figure4: Principlestructureof theDrunkMan domain.

In all our experiments the referencedynamics for the con-
troller is given by τ∗(s′|s) ∝ δs∗(s′) + ǫ, where ǫ > 0
is small . In other words, the target prescribes that the en-
vironment should almost surely move to the ideal state s∗

from any other state. In our experiments the state spacewas
S = {0, ..., 12}, and the ideal states∗ = 6.

Notice that, due to the probabili stic nature of the domain,
any reasonable1 control scheme set to accomplish the task
would result in abell shaped empirical distribution of thesys-
tem state. Successof the control scheme can then be readily
appreciated visually by the difference of the expected value
and the ideal system state, as well as the standard deviation
of the empirical statedistribution. To present an overall eval-
uation of a control scheme’s performance, rather than a com-
parison of multipleparameters, we alsomeasured thedistance
between the empirical distributionand δs∗ using l1 norm.

4.1 Deviating Perturbation
In this experiment we introduce a deviating perturbation.
That is, beyondthe usual probabili stic step, the environment
has also deterministically shifted in one direction along the
linear graph. For example (referring to Figure 4) if the sys-
tem reached state k ∈ {0, ..., n − 1}, the additional step will
shift it to statek + 1.

−2 0 2 4 6 8 10 12 14
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

State

E
m

pi
ric

al
 fr

eq
ue

nc
y

EA−EMT
EMT Control
EMT Control+ model

Figure5: EA-EMT performanceunder persistent shift

In this context, Figure 5 shows the empirical distribution
of system states under three control strategies: the EA-EMT
controller andthestandard EMT Controller equipped with the
standard D-Man model (thus excluding the shift modelli ng),
and the standard EMT Controller equipped with the environ-
ment model that explicitly captures the additional shift. The
figure shows the complete empirical distribution of the EA-
EMT obtained during the first 200 control choices made in
this experiment, and marks a definitive improvement in per-
formance. This can be seen from the fact that the standard
EMT Control fails to enforcethereferencedynamicsτ∗, with
the system spending the majority of its time away from the
ideal state, s∗ = 6, while EA-EMT manages to force the
state distribution to concentrate closer to s∗. In fact, the dis-
tance between δs∗ and the EA-EMT distribution induced in

1Unreasonable, for instance, would be choosing a constant ac-
tion to equalise the left andtheright step probabilities, as this would
result in an almost uniform distribution, utterly defeating the con-
troller purpose.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

94

0 100 200 300 400 500 600 700 800
6

6.5

7

7.5

8

8.5

Window start

E
m

pi
ric

al
 fr

eq
ue

nc
y

m
ea

n

EA−EMT
EMT Control
EMT Control+ model

(a)

0 100 200 300 400 500 600 700 800
10

−2

10
−1

10
0

10
1

Window start

l 1 d
is

ta
nc

e
be

tw
ee

n
em

pi
ric

al
 fr

eq
ue

nc
ie

s

EA−EMT
EMT Control
Confidence Envelope

(b) Notice the log-scale of theY axis.

0 1000 2000 3000 4000 5000
3

4

5

6

7

8

9

Window start

E
m

pi
ric

al
 fr

eq
ue

nc
y

m
ea

n

EA−EMT
EMT Control
EMT Control+nonperturbed
Confidence Envelope

(c)

Figure6: EA-EMT adaptation to various perturbations: (a) Persistent Shift, (b) Random Permutation, (c) SwitchingShift

the first 200 steps is 40% lessthan the comparable distance
for the EMT controller. This, however, does not fully reflect
the adaptabilit y of EA-EMT. To this end, Figure 6(a) shows
how the mean of the empirical distributions of the 200 step
windows behave. The distributions induced by EMT Con-
trol do not change over time, resulting in straight horizon-
tal li nes depicting the constancy of the mean. On the other
hand, the data shows that EA-EMT quickly adapts, the algo-
rithm induces the empirical state distribution with the mean
approaching the ideal state s∗ = 6. In this respect, EA-EMT
even slightly surpasses theperformanceof thestandard EMT
algorithm with the correct environment model. This isdue to
the adaptiveportion of EA-EMT contributingto thetiebreak-
ing when considering similar actions – this tie breaking is
rigid in EMT Control. Similar pictures occur with respect to
the variance of the empirical distributions. This means that
EA-EMT overcomes themodel incoherence and increasingly
concentrates the state empirical distribution aroundthe ideal
state, which is exactly what the reference dynamics, τ∗, re-
quires.

4.2 Catastrophic Perturbation

The actionspaceof theD-Man domain has asimple intuitive
interpretation – the action sets how quickly the system state
will shift left or right. The deviating perturbation did not ex-
ceed this interpretation, it simply meant that the system will
naturally movein onedirectionfaster than theother. In away
it also meant that theperturbation induced avery mild model
incoherence– principally the model remained correct. How-
ever, EA-EMT can adapt to much moreseveremodel incoher-
ences. In fact, in the next set of experiments the environment
model is completely incorrect. For each run in this experi-
ment set a random permutation σ : A → A was selected.
Then, when action a ∈ A was applied, the environment re-
acted as if the actionwasσ(a).

In more depth, Figure 7 shows the empirical distributions
obtained in thefirst 200stepsof decisionmaking. Permuting
the action breaksany connection between what EMT Control
expects the action to doand what actually occurs in the envi-
ronment, essentially the actions are scrambled and the EMT
Control chooses a random action. This results in the failure
of the algorithm – the empirical state distribution is equiva-

lent to that of applying nocontrol at all2. In contrast, EA-
EMT easily adapts to scrambling and performs increasingly
well , as can be seen in Figure 6(b). Following the develop-
ment of the empirical distribution within a sliding 200step
window, the figure shows the l1 norm distance from the dis-
tribution formed by the standard EMT algorithm in the non-
perturbed environment. Thisdatademonstratesthat EA-EMT
exponentially quickly discoversthetrue effectsof actionsand
approaches the performance of the EMT control in a non-
perturbed environment. Even thoughthe empirical distribu-
tion of the first 200 steps includes the first decisions made
based onthescrambled model, it already recovers70% of the
performance lost due to the model incoherence and, through
further adaptation, it reaches95% recovery.

0 2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

0.3

State

E
m

pi
ric

al
 fr

eq
ue

nc
y

EA−EMT

EMT Control

EMT Control+nonperturbed

Figure7: EA-EMT performanceunder random permutations.

4.3 Periodic Perturbation
Finally, it is important to evaluate whether the algorithm
can also perform well i n a dynamically changing environ-
ment. For example in robotics, even if everything else re-
mains the same, the robot body will behave differently over
time due to natural wear-and-tear. To test EA-EMT in such
environments, we consider yet another perturbation: an ad-
ditional deterministic step is made, and the direction of the
step switchesbetween left andright with constant period(500

2Since left and right steps fail in respective terminal states, the
empirical probability there is higher.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

95

control steps in our experiments). The shape of the distribu-
tions formed by the controllers are equivalent to those in the
persistent shift experiment (see Figure 5), and we omit the
respective graph. On the other hand, the development of the
empirical distribution over time is quite different. In partic-
ular, Figure 6(c) shows the behaviour of the mean value for
empirical distributions calculated within a 200 step sliding
window. Whilethestandard algorithm literally switchesfrom
one value to another, depending onthe direction of the shift,
the performance of EA-EMT always shows recovery after a
direction switch occurs. Notice also, that the magnitude of
the mean variation at the switch point becomes significantly
(25%) less for EA-EMT than the standard EMT. This sug-
geststhat, beyonditsabilit y to recover from irrelevant adapta-
tions, the adaptive controller versionlearnsto reducethe con-
trol inertia. In other words the algorithm reduces the impact
of the sudden change in the environment behaviour, making
theoverall performancemorestable.

5 Conclusions and Future Work

In thispaper wepresent theEnsembleActionEMT algorithm
– a polynomial time solution to the Dynamics Based Control
framework with capabiliti es of on-line adaptation to environ-
ment model incoherences. The EA-EMT algorithm, uses the
transition matrices contained within the model as an expert
library for the feasible action effects in the environment, and
treats any possible action as an ensemble predictor based on
this experts set. Following the relevance of experts to the
exhibited effects an action has on the EMT dynamics esti-
mate, the weights within each ensemble action predictor are
updated. We have experimentally verified the efficiency of
the EA-EMT algorithm and shown that it quickly adapts to
deviating, periodic and catastrophic exogenous perturbations
of the environment. Furthermore, the data from the periodic
perturbation experiment suggests reduced control inertia.

These adaptive capabiliti es of the EA-EMT algorithm al-
low a wider range of problems to be solved within the DBC
framework than could hitherto be addressed. For example,
previously aprecise environment model wasrequired to solve
a type of search problem called areasweeping [Rabinovich
et al., 2007]. In contrast, the EA-EMT algorithm is capa-
ble of operating with environment behaviour described by a
set of dynamic primitives that may occur in response to an
action. This allows the algorithm to be applied in environ-
ments whose behaviour is only partially known, making pre-
cisemodelli ng impossible.

Speaking more generally, the use of the expert ensem-
ble method has a close association with plan recognition
techniques [Bui, 2003; Riley and Veloso, 2002; Pynadath
and Wellman, 2000], where a library (ensemble) of poten-
tial plans is commonly used. Plan recognition algorithms,
through observation and causal interpretation of events, se-
lect amost likely explanationfrom thelibrary. Similarly, EA-
EMT views expert alternatives as explanations to changes in
the environment state (which are not unlike the behaviours
of plans in a library). Specifically, EA-EMT evaluates the
performanceof each expert based onthe observed effects of
an action within the environment. This parallel opens up the

possibilit y of usingEA-EMT asan opponent recognitionand
classificationmethodin multi -agent adversarial scenarios.

However, EA-EMT also fuses and arbitrates between the
various expert predictions. Specifically, the action model
is essentially a weighted combination of the expert alterna-
tives, which links it to behaviour-based robotics (BBR). In
BBR [Arkin, 1998] a collection of simple (usually reactive)
control algorithms is fused by an arbitration mechanism that
combines their control signal. Given that this arbitration can
include mutual inhibition or activation of other control sig-
nals, the resulting system can exhibit complex, adaptive be-
haviour (see e.g. [Mataric, 1998; Buffet et al., 2002] and ref-
erencestherein) throughthemodulationandadaptation of the
arbitration processitself. Ideologically similar adaptation oc-
cursin EA-EMT, whereindividual expertsgain higher weight
in assembling the model with respect to their performancein
predicting the effects of an action. Thus we plan to exploit
this connection to construct new hybrid control schemas that
combine the subjective dynamics task specification of EMT
control with thestructural task decomposition of BBR.

Finally, we also would like to investigate the possibilit y of
altering the weight adaptation to include forgetting. That is,
over time the weights should have an inherent tendency to
equalise. By so doing, the controller could possibly produce
higher frequency adaptabilit y, enabling even better response
to periodic perturbations.

References
[Adamet al., 2008] A. Adam, Z. Rabinovich, and J. S. Rosenschein. Dynamicsbased

control with psrs. In 7th AAMAS, pages387–394, 2008.

[Arkin, 1998] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[Buffet et al., 2002] O. Buffet, A. Dutech, and F. Charpill et. Learning to weigh basic
behaviors in scalable agents. In 1st AAMAS, volume 3, pages1264–1265, 2002.

[Bui, 2003] H. Bui. A generalmodel for onlineprobabili stic planrecognition. In 18th
IJCAI, pages1309–1315, 2003.

[Cesa-Bianchi and Lugosi, 2006] N. Cesa-Bianchi and G. Lugosi. Prediction, learn-
ing, and games. Cambridge University Press, 2006.

[Eliazarand Parr, 2004] A. I. Eliazarand R. Parr. Learning probabili stic motion mod-
els for mobile robots. In 21st ICML, pages32–??,2004.

[Mataric, 1998] M. J. Mataric. Behavior-based robotics asa tool for synthesis of ar-
tificial behavior and analysis of natural behavior. Trends in Cognitive Sciences,
2(3):82–86, 1998.

[Pasula et al., 2004] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning
probabili stic relational planning rules. In 14th ICAPS, pages73–82, 2004.

[Powers, 1973] Willi am T. Powers. Behavior: The control of perception. Aldine de
Gruyter, Chicago, 1973.

[Pynadath and Wellman, 2000] D. V. Pynadath and M. P. Wellman. Probabili stic state-
dependent grammarsfor planrecognition. In 16th UAI, pages507–514, 2000.

[Rabinovich et al., 2007] Z. Rabinovich, J. S. Rosenschein, and G. A. Kaminka. Dy-
namicsbased control with an applicationto area-sweeping problems. In 6th AAMAS,
pages785–792, 2007.

[Riley and Veloso, 2002] P. Riley and M. Veloso. Recognizing probabili stic opponent
movement models. In The 5th RoboCup Competitions and Conferences. 2002.

[Stengel, 1994] R. F. Stengel. Optimal Control and Estimation. Dover Publications,
1994.

[Stronger and Stone,2005] D. Stronger and P. Stone. Simultaneious calibration of ac-
tionand sensor models in amobile robot. In Proceedings of the ICRA, 2005.

1st International Workshop on Hybrid Control of Autonomous Systems — Integrating Learning, Deliberation and Reactive Control (HYCAS 2009)
Pasadena, California, USA, July 13 2009

96

